Logic-based Approaches

Chirayu Wongchokprasitti, PhD

University of Pittsburgh

Center for Causal Discovery

Department of Biomedical Informatics <u>chw20@pitt.edu</u> <u>http://www.pitt.edu/~chw20</u>

Overview

- Predictive Modeling and Logic-based Approaches
- Inductive Logic Programming
- Classification and Regression Tree (CART)
- ID3 & C4.5 Tree Learning
- Tree Pruning & Model Evaluation
- Association Rule Mining

Introduction

Is logic embedded in our mind? Innate knowledge: Socrates' dialogue with a slave boy

http://en.wikipedia.org/wiki/Meno#Dialogue_with_Meno.27s_slave http://www.gutenberg.org/files/1643/1643-h/1643-h.htm

SOCRATES: It will be no easy matter, but I will try to please you to the utmost of my power. Suppose that you call one of your numerous attendants, that I may demonstrate on him.

MENO: Certainly. Come hither, boy.

SOCRATES: He is Greek, and speaks Greek, does he not?

MENO: Yes, indeed; he was born in the house.

SOCRATES: Attend now to the questions which I ask him, and observe whether he learns of me or only remembers.

MENO: I will.

SOCRATES: Tell me, boy, do you know that a figure like this is a square?

BOY: I do.

SOCRATES: And you know that a square figure has these four lines equal? BOY: Certainly.

SOCRATES: And these lines which I have drawn through the middle of the square are also equal?

Introduction

CART Trees

Inductive Logic Programming

. . .

Valid and Invalid Arguments for Conditional Logic

http://www.psychologyinaction.org/2012/10/07/classic-psychologyexperiments-wason-selection-task-part-i/

Affirming the Antecedent (modus ponens)	Denying the Consequent (modus tollens)
1. P →Q	1. P →Q
2. P	2. ∼Q
3. Q	3. ~P
Affirming the Consequent (INVALID)	Denying the Consequent (INVALID)
Affirming the Consequent (INVALID) 1. P →Q	Denying the Consequent (INVALID) 1. P →Q
Affirming the Consequent (INVALID) 1. P →Q 2. Q	Denying the Consequent (INVALID) 1. P →Q 2. ~P

If a card has a vowel on one side then it has an even number on the other side

Which of the above envelopes need to be turned over to test the following rule?

If an envelope is sealed, it has a 60ct stamp on it

Predictive Modeling and Logic-based Approaches

Data Mining Tools

- GNU R project with RStudio & Rattle <u>http://www.r-project.org/</u> <u>http://www.rstudio.com/ide/</u>
 - http://rattle.togaware.com/
- Mathworks MATLAB Statistical Toolbox
- Weka (University of Waikato)

http://www.cs.waikato.ac.nz/ml/weka/

Many other tools such as SAS STAT/EM, IBM SPSS Clementine, Python SciPy/Numpy, etc.

Predictive modeling

A process to create a model that best predicts a (continuous or discrete) outcome.

e.g., use customers' gender, age, and purchase history to predict future sales.

Discover patterns

Make predictions

Identify risks and opportunities, etc.

Logic-based approach

Based on the idea of using logical sentences/rules to represent knowledge learned from data.

For example:

A set of *IF-THEN rules* could be learned from a car dealer's marketing database, such as:

Rule 1: IF age >= 40 AND annual_income >=70K THEN Buy_our_SUV = TRUE

Rule 2: IF annual_income < 70K THEN Buy_our_SUV = FALSE

Such rules can be extracted from models created by approaches such as Decision Tree Induction, Inductive Logic Programming, and Association Rule Mining.

Inductive Logic Programming

Inductive Logic Programming (ILP)

- Automate the induction processes using Logic
 Programming
- Try to find a theory (rules) that covers all positive examples and no negative examples (completeness & consistency)
- Derive hypothesis using background and examples
- Rules can be used for classification and prediction

Positive examples(E^+) + Negative examples (E^-) + Background knowledge (B) => Hypothesis(H)

Decision Systems Laboratory

Shortcomings of ILP

- Large hypothesis spaces searched
- High computational demand
- Large numbers of trivial hypotheses derived

Shortcomings of logic-based approaches: Large number of hypotheses derived

Introduction

CART Trees

Inductive Logic Programming

ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation

Association Rule Mining

Predictive modeling notation

Predictive modeling is about

 $[Y_1, Y_2, \dots, Y_m; T_1, T_2, \dots, T_n] = f(X_1, X_2, \dots, X_i; A_1, A_2, \dots, A_j)$

where Y: continuous target/dependent variable
 T: categorical target/dependent variable
 X: continuous input/independent variable
 A: categorical input/independent variable

E.g.

 $Buy _SUV = f(Age, Income)$

Weather _Condition = f(Temperature, Atmospheric Pressure) Patient _Location = f(Respiratory Rate, Diastolic Blood Pressure, Systolic Blood Pressure)

Examples

Classification Trees

$$T = f(X_1, X_2, ..., X_i; A_1, A_2, ..., A_j)$$

Regression Trees

$$Y = f(X_1, X_2, ..., X_i; A_1, A_2, ..., A_j)$$

Support Vector Machines/Regression (SVM/SVR)

$$T = f(X_1, X_2, ..., X_i; A_1, A_2, ..., A_j)$$

$$Y = f(X_1, X_2, ..., X_i; A_1, A_2, ..., A_j)$$

• K-means Clustering

$$[X_1, X_2, ..., X_i; A_1, A_2, ..., A_j]$$

• Logistic Regression $T = f(X_1, X_2, ..., X_i; A_1, A_2, ..., A_j)$

Classification and Regression Trees

Introduction Inductive Logic Programming CART Trees

ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation Association Rule Mining

Classification And Regression Tree (CART)

Classification Tree: $T = f(X_1, X_2, ..., X_i; A_1, A_2, ..., A_j)$ The target is a categorical variable with different classes (discrete outcomes), e.g.,

Weather Condition = f(Temperature, Atmospheric Pressure) Patient Location = f(Respiratory Rate, Diastolic Blood Pressure, Systolic Blood Pressure,...)

Regression Tree: $Y = f(X_1, X_2, ..., X_i; A_1, A_2, ..., A_j)$ The target is a continuous variable with real numbers (continuous outcome), e.g.,

Price_of _ house = f(location, inflation rate,...)
oxygen_consumption = f(runtime, gender, age, weight, run_pulse, rest_pulse)

Classification and Regression Tree

Introduction Inductive Logic Programming CART Trees ID3 & C4.5 Tree Learning

Tree Pruning & Model Evaluation Association Rule Mining

Weather Condition = *f*(*Temperature, Atmospheric Pressure*)

Decision Systems Laboratory

Classification and Regression Tree (cont.)

Introduction Inductive Logic Programming

CART Trees ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation Association Rule Mining

Gini Diversity Index:

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$
$$Gini_V(D) = \sum_{i=1}^{m} \frac{|D_i|}{|D|} Gini(D_i)$$

$$\Delta Gini(V) = Gini(D) - Gini_V(D)$$

where

m : number of possible classes/real values

of the target variable

(e.g., 3 weather conditions, m = 3)

pi : percentage of tuples/observations that belongs to the class/real value *i*

|D_i|: number of tuples/observations that belongs to the class/real value *i* in the node

V: an independent variable as a predictor

Note: Gini index increases both when the number of types i evenness increase (similar to entropy).

increases	and	when	

Weather Condition (Sunny, Cloudy, Rainy)	Temperature (Warm, Cool)	Atmospheric Pressure (High, Low)
Sunny	Warm	High
Sunny	Warm	High
Sunny	Cool	Low
Cloudy	Cool	High
Cloudy	Warm	Low
Sunny	Warm	High
Cloudy	Warm	Low
Rainy	Cool	Low
Rainy	Cool	High
Cloudy	Warm	High

Classification and Regression Tree (cont.)

The split criterion is to choose a variable *V* and a nominal value (categorical variable) or a split point (continuous variable) that maximize $\Delta Gini(V)$, i.e., to find the minimum

 $Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$

 $Gini_{\mathcal{V}}(D) = \sum_{i=1}^{m} \frac{|D_i|}{|D|} Gini(D_i)$

 $Gini_V(D)$.

Take the weather data as example

$$Gini(Weather) = 1 - \left(\frac{4}{10}\right)^2 - \left(\frac{4}{10}\right)^2 - \left(\frac{2}{10}\right)^2 = 0.64$$

$$Gini_{Temperature}(Weather) = \frac{4}{10} \left(1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2\right) + \frac{4}{10} \left(1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2\right) + \frac{2}{10} \left(1 - \left(\frac{2}{2}\right)^2 - \left(\frac{0}{2}\right)^2\right)$$

$$= 0.15 + 0.15 + 0 = 0.3$$

$$\Delta Gini(Temperature) = 0.64 - 0.3 = 0.34$$

$$Gini_{Atmospheric Pressure}(Weather) = \frac{4}{10} \left(1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2 \right) + \frac{4}{10} \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 \right) + \frac{2}{10} \left(1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 \right) = 0.15 + 0.2 + 0.1 = 0.5$$

 $\Delta Gini(Atmospheric Pressure) = 0.64 - 0.5 = 0.14$

Therefore, we choose *Temperature*, not the

Atmospheric Pressure as the first split to create the tree.

	Tempe	
Weather	-rature	Atmospheric
Condition		Pressure
Sunny	Warm	High
Sunny	Warm	High
Sunny	Cool	Low
Cloudy	Cool	High
Cloudy	Warm	Low
Sunny	Warm	High
Cloudy	Warm	Low
Rainy	Cool	Low
Rainy	Cool	High
Cloudy	Warm	High

Introduction Inductive Logic Programming

CART Trees ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation Association Rule Mining

Classification Tree using R/Rattle with Weather data

Weather Condition (Sunny, Cloudy, Rainy)	Temperature (Warm, Cool)	Atmospheric Pressure (High, Low)
Sunny	Warm	High
Sunny	Warm	High
Sunny	Cool	Low
Cloudy	Cool	High
Cloudy	Warm	Low
Sunny	Warm	High
Cloudy	Warm	Low
Rainy	Cool	Low
Rainy	Cool	High
Cloudy	Warm	High

Introduction

CART Trees

Inductive Logic Programming

Association Rule Mining

ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation

Introduction Inductive Logic Programming

 CART Trees ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation Association Rule Mining

Classification Tree using MATLAB

wc	т	AP
'Sunny'	65	980
'Sunny'	70	990
'Sunny'	55	800
'Cloudy'	50	960
'Cloudy'	72	850
'Sunny'	69	950
'Cloudy'	75	800
'Rainy'	60	840
'Rainy'	61	930
'Cloudy'	70	970
'Sunny'	80	950
'Sunny'	81	930
'Sunny'	80	940
'Rainy'	60	920
'Rainy'	78	890
'Rainy'	60	810

Introduction Inductive Logic Programming CART Trees

ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation Association Rule Mining

Tree "over"- splitting

Tree pruning

Pre-pruning by halting the tree construction early

Introduction

CART Trees

Inductive Logic Programming

ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation

Association Rule Mining

Decision Systems Laboratory

Tree Pruning using MATLAB with Weather data

Introduction Inductive Logic Programming

 CART Trees ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation Association Rule Mining

wc	Т	AP
'Sunny'	65	980
'Sunny'	70	990
'Sunny'	55	800
'Cloudy'	50	960
'Cloudy'	72	850
'Sunny'	69	950
'Cloudy'	75	800
'Rainy'	60	840
'Rainy'	61	930
'Cloudy'	70	970
'Sunny'	80	950
'Sunny'	81	930
'Sunny'	80	940
'Rainy'	60	920
'Rainy'	78	890
'Rainy'	60	810

Iterative Dichotomiser (ID3) and C4.5 Tree Learning

Entropy

- Entropy: $H(X) = -\Sigma p(X = i) \log_2 p(X = i)$
- Introduced by Claude Shannon (1948), "A Mathematical Theory of Communication"
- Entropy measures the uncertainty in a specific distribution.
- If p(X = 1) = 1 then: H(X) = - (1)(log₂1) - (0)(log₂0) = 0
- If p(X = 1) = .5 then: H(X) = - (.5)(log₂.5) - (.5)(log₂.5) = 1
- Which attribute to split on?
 - The one that is best to reduce uncertainty (Entropy)
 - In the other word, the one that gives the most information gain

Introduction Inductive Logic Programming CART Trees

 ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation Association Rule Mining

Iterative Dichotomiser (ID3) and C4.5 Tree Learning

Introduction Inductive Logic Programming CART Trees

 ID3 & C4.5 Tree Learning Tree Pruning & Model Evaluation Association Rule Mining

ID3 C4.5 $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$ $SplitInfo_V(D) = -\sum_{i=1}^{m} \frac{|D_i|}{|D|} \times \log_2(\frac{|D_i|}{|D|})$ $Info_V(D) = \sum_{i=1}^{m} \frac{|D_i|}{|D|} \times Info(D_i)$ $Gain(V) = Info(D) - Info_V(D)$ Gain(V) = Cain(V) $Gain(V) = \frac{Gain(V)}{SplitInfo_V(D)}$

m : the number of possible classes/real values of the target variable

(e.g. 3 weather conditions, *m* = 3)

pi : the percentage of tuples/observations that belongs to the class/real value *i*.

 $|D_i|$: the number of tuples/observations that belongs to the class/real value i in the node

V: a independent variable as a predictor

Decision Systems Laboratory

Tree Pruning and Model Evaluation

Tree model evaluation

Confusion Matrix and Misclassification Rate (*MR***)**

		Actua	l Class
		С	\overline{C}
Predicted Class	С	True Positive (TP)	False Positive (FP)
	\overline{C}	False Negative (FN)	True Negative (TN)

Confusion Matrix

$\mathbf{V} = 0$				
		Predicted Class		
		A	A B	
Actual	A	25	25	50
Class	B	25	25	50
		50	50	100

V = 0

Matrix A

$$MR = 1 - \frac{25 + 25}{100} = 0.5$$

Cohen's Kappa Statistics (K)

$$K = 0.1873$$
Predicted Cla

 $MR = 1 - Accuracy = 1 - \frac{TP + TN}{T}$

T = TP + FP + FN + TN

 $Accuracy = \frac{TP + TN}{T}$

		Predic	ted Class	
		A	В	
Actual	A	25	1	26
Class	B	49	25	74
		74	26	100

Matrix B

$$MR = 1 - \frac{25 + 25}{100} = 0.5$$

K	Interpretation
< 0	Poor agreement
0.0 — 0.20	Slight agreement
0.21 — 0.40	Fair agreement
0.41 — 0.60	Moderate agreement
0.61 — 0.80	Substantial agreement
0.81 — 1.00	Almost perfect agreement

1

K takes into account the chance agreement P_o = observed accuracy = 1 - $MR = \frac{TP + TN}{T}$ P_{e} = expected (chance) accuracy (TP)

$$\frac{P + FN}{P + FN} * (TP + FP) + \frac{(FP + TN) * (FN + TN)}{FN + FN}$$

Logic-based Approaches

Introduction Inductive Logic Programming **CART Trees** ID3 & C4.5 Tree Learning

- **Tree Pruning & Model Evaluation**
 - Association Rule Mining

_ 🗆 🗙

Tree model evaluation using Weka

Weka Explorer

Preprocess Classify Cluster Associate S	Select attributes Visua	lize								
Classifier										
Choose SimpleCart -S 1 -M 1.0 -N 5	-C 1.0									
Test options	Classifier output									
O Use training set	Correctly Clas	sified In:	stances	5		31.25	8		*	
Supplied test set Set	Incorrectly Cl	assified :	Instances	11		68.75	8			
Cross-validation Folds 10	Kappa statisti	с		-0.12	1					
	Mean absolute	error		0.44	58					
Percentage split % 66	Root mean squa	red error		0.59	55					
More options	Relative absol	ute error		99.26	73 %					
· · · · · · · · · · · · · · · · · · ·	Root relative	squared en	rror	123.74	52 %					
	lotal Number o	I Instance	23	16						
	Detailed Accuracy By Class									
Start Stop	=== Decalled A	ccuracy by	y Class ===	-						
Result list (right-click for options)		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class		
10:17:49 - trees. J48		0.571	0.667	0.4	0.571	0.471	0.54	Sunny		
10:25:10 - trees.SimpleCart		0	0.083	0	0	0	0.323	Cloudy		
		0.2	0.364	0.2	0.2	0.2	0.455	Rainy		
	Weighted Avg.	0.313	0.426	0.238	0.313	0.268	0.459			
	=== Confusion 1 a b c < c 4 1 2 a = S 2 0 2 b = C 4 0 1 c = R	Matrix === lassified unny loudy ainy	= as						E	

Association Rule Mining

The Lift of a rule (X => Y) is the ratio of the observed support to the expected support. It is to measure the degree of independence between itemset X and Y e.g. Lift({milk, bread} => {butter}) = 0.2/ (0.4 * 0.4) = 1.25

$$lift(X \Rightarrow Y) = \frac{supp(X \cup Y)}{supp(X) \times supp(Y)}$$

Decision Systems Laboratory

Association Rule Mining using R/Rattle with Retail data

tem1	ltem2	ltem3	ltem4	ltem5	ltem6	ltem7	ltem8	ltem9	ltem10	ltem11																						
30	p31	p32													,	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
533	p34	p35										õ																				
p36	p37	p38	p39	p40	p41	p42	p43	p44	p45	p46		0.0																				
p38	p39	p47	p48																													
p38	p39	p48	p49	p50	p51	p52	p53	p54	p55	p56	E.	25																				
p32	p41	p59	p60	p61	p62							0																				
р3	p39	p48									(e)																					
p63	p64	p65	p66	p67	p68						ati	20																				
p32	p69										(re	Ö													1							
p48	p70	p71	p72								S									_												
p39	p73	p74	p75	p76	p77	p78	p79				en	- 72																				
p36	p38	p39	p41	p48	p79	p80	p81				du	0																				
p82	p83	p84									fre	0																				
p41	p85	p86	p87	p88							eH																					
p39	p48	p89	p90	p91	p92	p93	p94	p95	p96	p97	±	0																				
p36	p38	p39	p48	p89							1	ų																				
p39	p41	p102	p103	p104	p105	p106	p107	p108				0.0																				
p38	p39	p41	p109	p110							-	-																				
p39	p111	p112	p113	p114	p115	p116	p117	p118				0																				
p119	p120	p121	p122	p123	p124	p125	p126	p127	p128	p129	1	0.0																				
p48	p134	p135	p136								1		St	8 8	8	A	and all a	12 9 M 10 32	A A A A A	N N 2 2 2 2 2	A A & A & A & A	A A A A A A A A A A	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	N & & & & & & & & & & & & & & & & & & &	A A & & & A & & & & & & & & & & & & & &	************	* * * * * * * * * * * * * * * * *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		*******************	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	* * * * * * * * * * * * * * * * * * * *
p39	p48	p137	p138	p139	p140	p141	p142	p143	p144	p145	1		AL AL		6	N. A.	al an	al an al a	million million	and and and and and and	and and and and and and and	and and all all all all all and and	and and all all all all and and and and and	and and all all all all all and and and and and	and and all all all all all all all all all al	and an all all all all and and and and and and and and	" at	and all all all all all all all all all al	" at	" at	" h"	a han at
p39	p150	p151	p152									1	¢, 4¢, 1	16. 16. 1	Ø.	16.	16. 10 14	16. 16. 16. 16.	16. 12. 16. 16. 16.	16. 16. 16. 16. 16. 16. 1	K. K. K. K. K. K. K. K.	19. 17. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	* * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* ~ * * * * * * * * * * * * * * *	* ~ * * * * * * * * * * * * * * * *	* ~ * * * * * * * * * * * * * * * * *	* ~ * * * * * * * * * * * * * * * * * *	* ~ * * * * * * * * * * * * * * * * * *	* ~ * * * * * * * * * * * * * * * * * *	* ~ * * * * * * * * * * * * * * * * * *
p38	p39	p56	p153	p154	p155																											

Decid Retail market basker data from anonymous Belgian retail store, http://fimi.ua.ac.be/data/_____ Logic-based Approaches

References

- [1] "Predictive modeling," *Wikipedia, the free encyclopedia*. 21-Sep-2012.
- [2] "Inductive logic programming," *Wikipedia, the free encyclopedia*. 13-Oct-2012.
- [3] T. K. Prasad, "CS 774 Logic Programming." [Online]. Available: http://www.cs.wright.edu/~tkprasad/courses/cs774/cs774.html.
- [4] J. Han and M. Kamber, *Data mining: concepts and techniques*. Morgan Kaufmann, 2006.
- [5] I. H. Witten and E. Frank, *Data Mining: Practical machine learning tools and techniques*. Morgan Kaufmann, 2005.
- [6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, *Classification and Regression Trees*, vol. 1. Chapman & Hall/CRC, 1984.
- [7] "Association rule learning," *Wikipedia, the free encyclopedia*. 21-Oct-2012.

Decision Systems Laboratory

Conclusions

