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Overview 

•  Introduction 
•  Statistical significance testing, 

confidence intervals 
•  Sensitivity and specificity 
•  ROC curves 
•  AUC 
•  Cross-validation 
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The task 
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Introduction: The need for verification 

The fundamental question: 

How do we know that 
the knowledge 
extracted from data is 
worth anything? 

http://www.ehow.com/how_7897502_evaluate-higher-order-questions-answers.html 
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Introduction: The need for verification 

Many possible (often problem-dependent) answers, e.g., 
•  “I’m just reporting what I see in the data” 

•  “My model performs well in practice” 

•  “I can provide a measure of reliability of the extracted 
knowledge” 

•  “I have confirmed the discovery independently” 



Verification and Testing 

Some history: 
Foundations of Western 
scientific thought 



Verification and Testing 

Introduction: Philosophical foundations 

http://en.wikipedia.org/wiki/Verification_principle 

Verificationism 
 “A statement or question is only legitimate if there is 
some way to determine whether the statement is true 
or false, or what the answer to the question is.” 
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Introduction: Philosophical foundations 

Empiricism 
 “Experience is our only source of 
knowledge, i.e., knowledge comes only 
(or primarily) from sensory experience” 

http://en.wikipedia.org/wiki/Empiricism 
http://en.wikipedia.org/wiki/John_Locke 

John Locke (1632-1704), a leading 
philosopher of British empiricism 
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Introduction: Philosophical foundations 

Positivism 
 “Considering unverifiable sentences is 
pointless, as they cannot be verified” 

http://en.wikipedia.org/wiki/Positivism 
http://en.wikipedia.org/wiki/Auguste_Comte 

August Comte (actually Isidore 
Auguste Marie François Xavier 
Comte) (1798-1857), a leading French 
philosopher, credited for founding 
the doctrine of positivism 
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Introduction: Philosophical foundations 

Logical positivism 
 “To be meaningful, a non-analytic sentence 
has to be empirically verifiable” 

 

http://en.wikipedia.org/wiki/Logical_positivism 
http://en.wikipedia.org/wiki/Vienna_Circle 
http://payingattentiontothesky.com/2011/02/02/the-vienna-circle-
verification-falsification-and-god-%E2%80%93-brian-davies/ 

Selected Members of the Vienna Circle 
(from left to right: Moritz Schlick, 
Rudolf Carnap, Otto Neurath, Hans 
Hahn and Philipp Frank), roughly 1920s 
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Introduction: Philosophical foundations 

Pragmatism 
 “There is no difference that doesn't make 
a difference” 

http://en.wikipedia.org/wiki/Pragmatism 
http://en.wikipedia.org/wiki/Charles_Sanders_Peirce 

Charles Sanders Peirce (1839-1914), 
sometimes known as “the father of 
pragmatism” 
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Introduction: Philosophical foundations 

Falsificationism 
 “Meaningful sentences are falsifiable 
rather than verifiable” 

http://en.wikipedia.org/wiki/Falsifiability 
http://en.wikipedia.org/wiki/Karl_Popper 

Sir Karl Popper (1902-1994), regarded 
as one of the greatest philosophers 
of the 20th century, known best for 
his attempt to repudiate the classical 
observationalist/inductivist form of 
scientific method in favor of 
empirical falsification 
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Statistical Significance Testing 
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Scientific inference 

•  You cannot ever be sure about truth or falsity of a hypothesis. 

•  You can get to the truth only with some probability. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Scientific inference: 
Classical hypothesis testing 

•  No magic associated with 
classical hypothesis testing 

•  Just a tool for decision making 
under uncertainty 

•  Why do we do it this and no 
other way? 

Classical hypothesis testing: 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Elements of classical hypothesis testing 

Elements of classical significance testing: 

•  Null hypothesis (H0) and its complement (H1). 
•  Significance level (α, p value). 
•  Statistical power (1- β), probability of rejecting 

H0 given that it should be rejected. 
•  Sample size n. 
•  Effect size. 

H0 usually says something like “no effect” and is the more 
conservative one. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Example: Comparing the means 

µ0 
True mean 

µ1 If the observed mean 
falls outside the 95% 
range, we reject H0 

µ1 
If the observed mean 
falls inside the 95% 
range, we keep H0 

95% of the area 
under the curve! 

The probability of observing 
a given value of the mean is 
proportional to the area 
under the curve. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Risks of classical hypothesis testing 
Risks related to classical significance testing (and to any decision 
making under uncertainty): 

•  Type I errors 
•  Type II errors 

•  Need to consider consequences of these errors. 
•  What is the “correct” significance level? α = 0.05?  0.05 is a 

customary value, said to be proposed by Ronald Fisher at a party. 
•  Traditionally scientists believe that it is worse to risk being gullible 

than it is to be blind to a relationship – philosophers of science 
characterize it as “healthy skepticism” of the scientific outlook. 

•  Statistical power (1 – β) 
•  Power curve is the plot of the power of a test as we vary one of its 

parameters (α, β, variance, sample size, effect size). 

How do we deal with this risk? 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Testing multiple hypotheses 

Caution! 
If you test many hypothesis 

using the classical 
significance testing, you 
run an increasing risk of 
accidental errors. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Scientific decision making: Consequences 

•  Research may involve issues as difficult and important as 
smoking, cholesterol, etc. 

•  Then the congressmen or senators will pick up our results, stand 
up in the congress and enact laws that will either save lives or 
make our lives unnecessarily uncomfortable. 

•  Statistical inference in science is a decision process and most 
books will make you aware of the importance to consider 
consequences. 

•  The elements of decision theory that you get here will help you in 
understanding what this is about. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Elements of decision theory 

The theoretically sound way of making decisions under uncertainty 

•  Decision making: we need to consider uncertainty and preferences.  
These are measured in terms of probability and utility respectively. 

•  Some special cases are easy: 
•  it is better to be rich and healthy than poor and sick; 
•  it's better to start a project that has a high chance of succeeding 

and a high payoff than to start a project that has a low chance of 
succeeding and a low payoff. 

We can reason qualitatively but it is possible to do it within this 
framework. 

•  Probability is a measure of uncertainty. 
•  Utility is a measure of preference that combines with probability as 

mathematical expectation. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Pascal’s wager 

Pascal’s wager: Should we believe in God or not? 

God exists God does not exist 

believe 

doubt 

eternal 
salvation 

eternal 
damnation 

forgo some 
earthly 
pleasures in 
your life 

enjoy some 
earthly 
pleasures in 
your life 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Pascal’s wager 
Pascal’s wager: Decision tree 

Pascal's 
decision: 
"believe"/"
doubt"

God 
exists?

consequences 
of the 
decision

believe

doubt

yes

yes

no

no

eternal 
salvation

enjoy some possible 
earthly pleasures

forgo some possible 
earthly pleasures

eternal 
damnation

EU(believe) = p ∞ + (1-p)(-ε) = ∞ 
EU(doubt) = p (- ∞) + (1-p) ε = - ∞ 

The only rational thing is to believe J! 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Classical hypothesis testing: 
A decision-theoretic view 

Scientist's 
decision: 
"H0"/"H1"

true state 
of nature 
(H0/H1)

consequences 
of the 
decision

observed 
data

"H0"

"H1"

H0

H0

H1

H1

nice, no change

good, new result, 
closer to the truth

bad, obstructing 
progress of science

bad, we were too 
bold and daring

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Classical hypothesis testing: 
A decision-theoretic view 

•  The main problem (of course, after determining what the value of the 
outcomes are) is to determine the prior probability of the hypothesis.  
To see that, start with Pr(H0|D) and the derive everything using Bayes 
theorem in terms of Pr(H0), Pr(D|H0), and Pr(D|H1). 

•  Recall the possible errors are: (type I and type II) -  α and β are 
probabilities of these errors. 

•  Decision-theoretic (Bayesian) view allows to explore the exact relation 
between the significance level and the decision. 

Pr(H0|D)=Pr(D|H0)Pr(H0) / (Pr(D|H0)Pr(H0)+Pr(D|H1)Pr(H1)) 
= α P(H0)/(α Pr(H0) + (1-β)(1-Pr(H0))) 

Pr(H1|D)=Pr(D|H1)Pr(H1) / (Pr(D|H0)Pr(H0)+Pr(D|H1)Pr(H1)) 
= (1-β)(1-P(H0))/(α Pr(H0) + (1-β)(1-Pr(H0))) 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confidence intervals 

•  The thing is reversed here (from the point of view of the 
classical hypothesis testing). 

•  What are the boundaries of the interval of x values such that the 
interval has 95% chance of being hit. 

•  Watch out the proper interpretation:  "I'm 95% sure that the true 
mean is inside this interval" and not "I'm 95% sure about the 
true value of the mean." 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confidence intervals 

http://en.wikipedia.org/wiki/Confidence_interval 

In this bar chart, the top ends of the bars indicate observation means and the red line 
segments represent the confidence intervals surrounding them. Although the bars are 
shown as symmetric in this chart, they do not have to be symmetric. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confidence intervals: Example 

http://en.wikipedia.org/wiki/Confidence_interval 

A machine fills cups with margarine, and is supposed to be adjusted so that the content 
of the cups is 250g of margarine. As the machine cannot fill every cup with exactly 
250g, the content added to individual cups shows some variation, and is considered a 
random variable X. This variation is assumed to be normally distributed around the 
desired average of 250g, with a standard deviation of 2.5g. 

To determine if the machine is adequately calibrated, a sample of n = 25 cups of 
margarine are chosen at random and the cups are weighed. The resulting measured 
masses of margarine are X1, ..., X25, a random sample from X. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confidence intervals: Example 

http://en.wikipedia.org/wiki/Confidence_interval 

To get an impression of the expectation µ, it is sufficient to give an estimate. The 
appropriate estimator is the sample mean: 

  
 
 
The sample shows actual weights x1, ..., x25, with mean: 
  
 
 
If we take another sample of 25 cups, we could easily expect to find mass values like 

250.4 or 251.1 grams.  A sample mean value of 280 grams however would be extremely 
rare if the mean content of the cups is in fact close to 250 grams.  There is a whole 
interval around the observed value 250.2 grams of the sample mean within which, if the 
whole population mean actually takes a value in this range, the observed data would 
not be considered particularly unusual.  Such an interval is called a confidence interval 
for the parameter µ. How do we calculate such an interval?  The endpoints of the 
interval have to be calculated from the sample, so they are statistics, functions of the 
sample X1, ..., X25 and, hence, random variables themselves. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confidence intervals: Example 

http://en.wikipedia.org/wiki/Confidence_interval 

In our case, we may determine the endpoints by considering that the sample 
mean X from a normally distributed sample is also normally distributed, with 
the same expectation µ, but with a standard error of: 

  
 
By standardizing, we get a random variable: 
  
 
dependent on the parameter µ to be estimated, but with a standard normal 

distribution independent of the parameter µ. Hence it is possible to find 
numbers −z and z, independent of µ, between which Z lies with probability 1 − 
α, a measure of how confident we want to be. 

We take 1 − α = 0.95, for example. So we have: 
  
 
The number z follows from the cumulative distribution function, in this case the 

cumulative normal distribution function: 
  
 
and we get: 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confidence intervals: Example 

http://en.wikipedia.org/wiki/Confidence_interval 

In other words, the lower endpoint of the 95% confidence interval is: 
 
 
and the upper endpoint of the 95% confidence interval is: 
 
 
With the values in this example, the confidence interval is: 
 
 
 
This might be interpreted as: with probability 0.95 we will find a confidence 

interval in which we will meet the parameter µ between the stochastic 
endpoints 

 
and 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confidence intervals: Example 

http://en.wikipedia.org/wiki/Confidence_interval 

This does not mean that there is 0.95 probability of meeting the parameter µ in the 
interval obtained by using the currently computed value of the sample mean, 

  
Instead, every time the measurements are repeated, there will be another value for 

the mean X of the sample. In 95% of the cases µ will be between the endpoints 
calculated from this mean, but in 5% of the cases it will not be. The actual 
confidence interval is calculated by entering the measured masses in the 
formula. Our 0.95 confidence interval becomes: 

  
 
In other words, the 95% confidence interval is between the lower endpoint 249.22g 

and the upper endpoint 251.18g.  
As the desired value 250 of µ is within the resulted confidence interval, there is no 

reason to believe the machine is wrongly calibrated.  
The calculated interval has fixed endpoints, where µ might be in between (or not). 

Thus this event has probability either 0 or 1. One cannot say: “with probability 
(1−α) the parameter µ lies in the confidence interval.” One only knows that by 
repetition in 100(1 − α) % of the cases, µ will be in the calculated interval.  In 100α
% of the cases however it does not.  And unfortunately one does not know in 
which of the cases this happens.  That is why one can say: “with confidence 
level 100(1 − α) %, µ lies in the confidence interval.” 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confidence intervals: Example 

http://en.wikipedia.org/wiki/Confidence_interval 

The figure below shows 50 realizations of a confidence interval for a 
given population mean µ.  If we randomly choose one realization, the 
probability is 95% we end up having chosen an interval that contains 
the parameter; however we may be unlucky and have picked the 
wrong one.  We will never know; we are stuck with our interval. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confidence intervals: Simulation 

•  If there are enough samples, you can estimate the 
confidence intervals from the sample. 

•  If there are not enough samples but they can be assumed 
that they are representative of the population, you can 
“bootstrap” the sample. 

• Generally, parametric methods, like those in the example, 
can be replaced by computer-intensive methods (read 
“simulation”). 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Sensitivity and Specificity 
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Sensitivity and specificity 

http://en.wikipedia.org/wiki/Specificity_(statistics) 

Sensitivity and specificity are statistical measures of the performance 
of a binary classification test, also known in statistics as 
classification function. 

Sensitivity (also called recall rate in some fields) measures the 
proportion of actual positives which are correctly identified as such 
(e.g. the percentage of sick people who are correctly identified as 
having the condition). 

Specificity measures the proportion of negatives which are correctly 
identified (e.g. the percentage of healthy people who are correctly 
identified as not having the condition). 

These two measures are closely related to the concepts of type I and 
type II errors.  A perfect predictor would be described as 100% 
sensitivity (i.e., predict all people from the sick group as sick) and 
100% specificity (i.e., not predict anyone from the healthy group as 
sick). 

In practice, however, there are no perfect predictors. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Sensitivity and specificity: Definitions 

http://en.wikipedia.org/wiki/Specificity_(statistics) 

Sensitivity 
 
 
 
 
 
Specificity 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Sensitivity and specificity: Relationship among terms 

http://en.wikipedia.org/wiki/Specificity_(statistics) 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Sensitivity and specificity: Example 

http://en.wikipedia.org/wiki/Specificity_(statistics) 

The fecal occult blood (FOB) screen test used in 2030 people to look for bowel cancer 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Sensitivity and specificity: Example 

http://en.wikipedia.org/wiki/Specificity_(statistics) 

Hence, with large numbers of false positives and few false negatives, a positive FOB 
screen test is in itself poor at confirming cancer (PPV = 10%) and further 
investigations must be undertaken; it did, however, correctly identify 66.7% of all 
cancers (the sensitivity). However as a screening test, a negative result is very good 
at reassuring that a patient does not have cancer (NPV = 99.5%) and at this initial 
screen correctly identifies 91% of those who do not have cancer (the specificity). 

Related calculations 
 False positive rate (α) = type I error = 1 − 

specificity = FP / (FP + TN) = 180 / (180 + 1820) 
= 9% 

 False negative rate (β) = type II error = 1 − 
sensitivity = FN / (TP + FN) = 10 / (20 + 10) = 
33% 

 Power = sensitivity = 1 − β 
 Likelihood ratio positive = sensitivity / (1 − 

specificity) = 66.67% / (1 − 91%) = 7.4 
 Likelihood ratio negative = (1 − sensitivity) / 

specificity = (1 − 66.67%) / 91% = 0.37 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Confusion Matrix 
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Confusion matrix 

http://en.wikipedia.org/wiki/Specificity_(statistics) 

The same thing as what we saw before but used with reference to 
the model’s predictions and the true state of the World. 

• Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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ROC (Receiver Operating 
Characteristic) Curves 
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ROC curve 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic 

•  Originates from the signal 
detection theory 

•  A graphical plot that 
illustrates the performance 
of a binary classifier 
system as its 
discrimination threshold is 
varied. 

•  Created by plotting the 
fraction of true positives 
out of the positives (TPR = 
true positive rate) vs. the 
fraction of false positives 
out of the negatives (FPR 
= false positive rate), at 
various threshold settings. 
TPR is also known as 
sensitivity, and FPR is one 
minus the specificity or 
true negative rate. 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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ROC curve (the common sense) 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic 

•  Please note that very often we need to make a compromise between 
sensitivity and specificity: Higher sensitivity means lower specificity and 
vice versa. 

•  Setting the threshold is a matter of decision. 
•  The threshold that we decide to adopt will determine the parameters of 

our test (i.e., true/false positive and true/false negative rates). 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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ROC curve (the common sense) 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic 

•  As we move the threshold, we change the values of sensitivity and 
specificity.  The plot of all possible values of these two parameters gives 
us an interesting characterization of the test (classification system, 
receiver, etc.) 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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ROC curve (the common sense) 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic 

•  Plots like the one on the right-hand 
side are called ROC (Receiver 
Operating Characteristics) Curves 

•  They are a way of characterizing the 
quality of the detection system 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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AUC: Area Under 
the (ROC) Curve 
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AUC: Area Under the (ROC) Curve 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic 

•  AUC is a way of 
characterizing a “receiver” 
by means of one number 

•  It captures the intuitive 
idea that an ROC that is 
higher is better. 

•  A perfect ROC curve will 
go through the point (0,1). 
The area under it will be 
1.0. 

•  Criticized as an unreliable 
measure of performance. 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Cross-Validation 
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Cross-validation: The idea 

•  Imagine that I design a (closed book) exam consisting 
of 20 questions in such a way that I reveal all 20 
questions and answers before the exam. 

•  What will the most successful approach be like? 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Cross-validation: The idea 

•  Imagine that the Kaggle competition releases all data to 
the participants. 

•  What will the most successful approach be like? 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Cross-validation: The idea 

•  Testing a model on the same data that we used for 
training it does not seem fair. 

•  It will favor most complex models that fit the data best. 
•  What about simplicity? 
•  Simpler model may actually fit future instances of data 

better than complex models. 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Simple vs. complex models of reality 

Ptolemy’s model Copernicus’ model 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Cross-validation: Test set method 

•  Cross-validation is a technique for assessing how the results of a 
statistical analysis will generalize to an independent data set. 

•  It is mainly used in settings where the goal is prediction, and one 
wants to estimate how accurately a predictive model will perform in 
practice. 

•  In its simplest form, you divide the data into two disjoint sets: (1) 
training set and (2) test set (a.k.a. validation set). 

•  You perform the analysis on the training set and validate the results 
on the test set. 

•  This is simple and effective. 

http://en.wikipedia.org/wiki/Cross-validation_(statistics) 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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k-Fold cross-validation 

•  To reduce variability, you may perform multiple rounds of 
cross-validation, using a different partition of the data in each 
round. 

•  The validation results can be then averaged over the rounds. 
•  The cost of this is more computation, as you have to repeat the 

procedure of learning multiple times. 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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k-Fold cross-validation 

The idea: 

http://blog.weisu.org/2011/05/cross-validation.html 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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k-Fold cross-validation 

Procedure: k-fold cross validation 

1. Shuffle the items in the training set 
2. Divide the training set into k equal parts of size n (e.g., 10 sets 

of size n=50 instances) 
3. Do i = 1 to k times: 

a. Call the ith set of n sentences the test set; set it aside 
b. Train the system on the remaining k-1 sets; test the system 

 on the test set; record performance. 
c. Clear memory: forget everything learned during training 

4. Calculate average performance from the k test sets 

Now every instance is used for both training and testing. 
Why do we need to clear memory in Step 3-c? 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Leave-One-Out cross-validation 

A special case of k-fold cross-validation taking it to the extreme (k=n). 
Very efficient in terms of maximizing the size of the training set. 
Procedure: Leave-One-Out 

1. Do i = 1 to n times: 
a. Set aside instance i 
b. Train the system on the remaining n-1 instances; 

 test the system on the instance i that was set aside; 
 record performance. 

c. Clear memory: forget everything learned during training 
4. Calculate average performance on the n test cases 

Now we have effectively used n-1 instances for training and tested 
the model on all n instances. 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Bootstrap cross-validation 

Cross-validation is a form of re-sampling, just like bootstrap. The 
bootstrap, however, involves re-sampling with replacement from a 
sample M of n (e.g., n=500 instances) 
Procedure: bootstrap cross validation 

1. Do k times: 
a. Draw n items from M with replacement, call this sample R 
b. Find the items in M that do not appear in R, call these the 

 test set 
c. Train the system on the items in R; test it on the items in the 

 test set; and record the performance 
d. Clear memory, that is, forget everything learned during 

 training 
2. Calculate the average performance from the k test sets 

Because k should be 200 or more, this involves a lot more 
computation than, say, 10-fold cross validation. 
It can outperform cross-validation in some cases. 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 
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Cross-validation to measure learning 

Cross-validation is easily adapted to estimate performance after 1, 2, ..., M 
training sentences: 
Procedure: Incremental k-fold cross validation 

1. Shuffle the items in the training set 
2. Divide the training set into k equal parts of size n, say, ten sets of size n=50 

sentences 
3. Do i = 1 to k times: 

a. Call the i-th set of n sentences the test set; call the remaining k-1 sets of 
 sentences the training set 

b. Repeat 10 times: 
Select one sentence at random from the training set; train the system on this 
sentence; test the system on the test set; record the performance. 
c. Repeat 9 times: 
Select ten sentences at random from the training set; train the system on these 
sentences; test the system on the test set; record the performance. 
… 
d. Clear memory, that is, forget everything learned during training 

4. Calculate the performance for each level of training averaged over the the k test sets 

Trains and tests on 1, 2, 3, ...,10, 20, 30, ..., 100 sentences in each fold. 

• 
Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 



Verification and Testing 

• Learn different models, perform k-fold cross-
validation, choose the model with the lowest error 

• Train the best model on all data and use it as a 
predictive model that you will apply to future 
cases. 

Cross-validation as a guide in model selection 
• 

Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 



Verification and Testing 

• Apply different algorithms, perform k-fold cross-
validation. 

• Choose the algorithm with the lowest error. 
• This is, in a way, what Kaggle competitions are doing. 

Cross-validation as a guide in algorithm choice 
• 

Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 



Verification and Testing 

Calibration 



Verification and Testing 

The question here is: Is my model producing accurate 
probabilities? 
Why do you want them accurate? Useful in decision making! 
We plot the “true probabilities” (i.e., the frequencies observed in 
the data) against the probabilities calculated by the system. 

Calibration 
• 

Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 



Verification and Testing 

Calibration: Overconfidence and Underconfidence 
• 

Significance testing 
Sensitivity and specificity 
ROC curves, AUC 
Cross-validation 

http://3.bp.blogspot.com/-lmpGS0cqvuw/VDxhem5qTFI/AAAAAAAAACU/qu0hVUn9PBQ/s1600/20141014-Calibration.png 



Verification and Testing 

Examples: GeNIe 



Verification and Testing 

Concluding remarks 

• Reality is a great check on every activity J. 
• Verification is critical for every model and theory, 

including models and theories derived from data. 
• Statistics is again a guiding light in this respect. 
• There are a variety of approaches to verification and 

testing, cross-validation being the prominent one for 
data-based analysis. 


