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/ Overview

Fundamentals

(Uncertainty, probability, variance, sampling, randomness,
elements of data analysis. Describing and displaying data,
correlation.)

Bayes theorem and Bayesian probability theory
Joint probability distribution

(The foundation of any analytic technique. Conditional probability
distribution, Bayes theorem, prior and posterior probability
distribution. Tools for representing joint probability
distributions: probability trees, Bayesian networks, equation-
based models)

Representations of the joint probability distribution
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Why statistics? \

“... In this world nothing can be said to be certain, except death
and taxes” --- Benjamin Franklin in a letter to his friend M. Le Roy

(*) The Complete Works of Benjamin Franklin, John Bigelow (ed.), New York and London:
G.P. Putnam’s Sons, 1887, Vol. 10, page 170

* In other words, “Uncertainty is prominent around us.”

* It is an inherent part of all information and all knowledge.

* We need to deal with uncertainty in empirical work.

« Because this class focuses on analytics, we are going to
review some basic tools for looking at data and making
inferences from data.
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Why statistics ©? \

“Data don’t make any sense,
\ we will have to resort to statistics.”
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@ Fundamentals

Uncertainty manifested in data

Even though a behavior may be unpredictable in
the short run, it may have a regular and
predictable pattern in the long run.

0.60 -
€ 055
=
g_ 0.50 |
o
=
£ 045
0.40 | | |
10 100 1000 10,000

Number of tosses

Figure 7.2 Percent of heads versus number of tosses
in Kerrich’s coin-tossing experiment. [David Freedman
et al., Statistics Norton, 1978.]
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Flipping Coin Probabilities

Flipping Coin Probabilities
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Uncertainty manifested in data

A s WON -

 Bad luck.

DS

9873

Age Sex
43 Male

Smoking_Status Lung_Cancer

Smoker

55 Female NonSmoker
27 Female Smoker

18 Male

NonSmoker

81 Female Smoker

72 Male

NonSmoker

Some sources of uncertainty:
* Errors in measurement (e.g., cancer misdiagnosed).

« Subjects providing wrong information (e.g., smoking status, age).

- Latent variables that we did not control for (e.g., asbestos
exposure).

« Subject selection (possible bias).

Yes
Yes
No
No
No

Yes

Data like the above are not at all atypical.
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/ Why probability theory and statistics? \

“The theory of probabilities is basically only
common sense reduced to a calculus.”

(“... la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul.”)

— Pierre-Simon Laplace, “Philosophical Essay on Probabilities” (1814)
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/ Why probability theory and statistics? \

- “Statistics is the study of the collection, organization,

analysis, and interpretation of data.” podge, Y. (2003) The Oxford
Dictionary of Statistical Terms

. Statistics is th@ mathematical discipline for processing
and interpreting data, it is closely related probability theory.

*Departure from probability theory leads to provable
anomalies (e.g., “Dutch book” argument).

*All (with some exceptions) knowledge is uncertain and,
hence, best expressed by means of probabilities and
probability distributions.

\
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/ Bayesian probability theory
Joint probability distribution
Representations of j.p.d.

Some features of statistical analysis \

* Questions that we ask (in statistics but also in science in general)
concern systems, i.e., parts of the real world that can be reasonably
studied in separation.

 We want to make inference from a sample to a population (unless
we can make the entire population a sample)!

* ldeal sampling should be random, giving every member of the
population an equal chance of being selected

* In that case, we hope (but have a whole statistics for us) that the
sample is representative, i.e., has approximately the characteristics
of the population.

* If the sample is not random, then unknown/known factors may bias
the sample (such as experimenter's biases, political factors, etc.).

« Even in case of random sampling (the ideal) there is no guarantee
for a representative sample, but we can get arbitrarily close (in
terms of probability) to the population.

\
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Describing and displaying data

Statistics provides tools for
describing and displaying data

Example:

« What causes low student retention in
U.S. colleges?

» Over 120 variables (only 8 in the
picture on the right-hand side)
measured across 204 universities
(total of over 24,000 numbers).

» Note variables (columns) and data
points (rows).

DS

spend apret

9855
10527
7904
6601
7251
6967
8489
9554
156287
7057
16848
18211
21561
20667
10684
11738
10107
7817
7050
9082
11706
7643
25734
20155
29852
7980
8446
24636
7396
24256
7263
7005
10454
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52.5
64.25
37.75

57

62
66.75
70.333
85.25
65.25
55.25
77.75
9N
69.25
65
61.75
74.25
74
65.75
26
83.5
60
49.25
90

86
94.5
68.5
57
92.75
68.75
81.25
54
46.75
77.75
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top10 rejr

15
36
26
23
17
40
20
79
42
17
43
87
58
68
26
32
43
36
11
73
56
23
77
84
84
34
23
88
34
68
28
50
34

29474
22.309
25.853
11.296
22.635
9.718
15.444
44.225
26.913
24379
26.69
76.681
44702
22.995
8.774
25449
11.315
33.709
0
64.668
16.937
36.635
67.758
69.31
75.009
9.122
29.65
70.653
13.469
35.556
49.583
36.236
23.784

tstsc pacc strat salar

65.063 36.887
71.063 30.97
60.75 41.985
67.188 40.289
56.25 46.78
65625 53.103
59.875 5046
74.688 40.137
70.75 28.276
59.063 44.251
75.938 27.187
80.625 51.164
76.25 26.689
75625 28.038

66 33.99
66.875 27.701

71 29.096
64.25 52.548
55.313 55.651
77.375 43.185
73.75 39.479
62.813 39.302
80.938 44.133
79.688 48.766
81.313 51.363
63.875 35.294
64.625 36.181
81.875 43.464
63.889 39.05

75 26.736
68.125 42149
68.188 33.875
67.5 33.333

12 60800
12.8 63900
20.3 57800

17 51200
18.1 48000

18 57700
13.5 44000
17.1 70100
14.4 71738
21.2 58200

9.2 63000
12.8 74400

9.2 75400

11 66200

9.5 52900

12 63400
16.2 66200
17.7 54600
18.8 59500
13.6 66700
12.7 62100
18.7 57700

10 80200
17.6 74000
10.6 74100
16.3 53100
14.8 63200
12.8 80300
14.8 51900
11.5 68200
13.4 48839
22.5 59600
11.2/ 70000
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/Measures of central tendency and spread

Measures of central tendency:

 mode (value occurring with the greatest frequency)
* median (mid-most score in a series)

 mean (arithmetic average)

* trimmed mean

Measures of spread:

* ranges: crude range (highest, lowest), extended range (or
corrected range) adds one unit to the range (to account for a
possible error in measurement), trimmed ranges (drop x% of

extreme points on both sides)
« variance o2 =3,(x;-u)?/n
 standard deviation o =sqrt(o?)

\  average deviation Z, (X;-u)/n /
D s L Fundamental Concepts from Statistics
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Basic statistics

Excel

N

Apagra
Mean 56.72107647
Median 55.7085
Mode 72
Standard Deviation 18.077 09676
Variance 326.7814274

@ Fundamentals

Bayesian probability theory
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Representations of j.p.d.

Kurtosis -0.554450128

GeNlIe Skewness 0.0891 85832

Range 76.5

Minimum 18.75

Maximum 95.25

Sum 9642.5 83

Count 170

Mean Variance StdDev Min Max Count

spend 109745} 3.02507e+007: =~ 5500.07: 4125 35863 .. 170 |
apret | 567211: 326781 180771 1875 8825 170
top10 | 384588 547855 234064 ° 8 9 170
rejr | . 306542:  232345: 170981 : 0. ...84067: . 170 :
tstsc |  66.1642: 486549 697531 48125 875 . 170
pacc | . 430731 . 171.746 ;. 131052 8964 ~ 76253: 170 :
strat | 160865 . 16.0521 : . 40065: 721 ... 292 . 170 :
salar | 613576 9.60946e+007: ~ 980279: 386400 67900 .. 170,
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ﬂrobablllty distribution \

Expresses the relative probabilities of
different values taken by a random variable

0.2 0.3 0.4

34.1% 34.1%

0.0 0.1

-30 =20 -loO M lo 20 30

Source: http://en.wikipedia.org/wiki/Probability distribution

e.d., grade distribution in
\ a university course
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Bayesian probability theory

Join tp obabltydst ribution

Representations of j.p.d.
/Standard deviation \

Sauage e&iC&W by Doug Savage

J . L

YOU'RE. THREE
STANDARD DEVIATI®ONS
ABOVE THE NOPRM

KR

\ LoVE LETTER FRoM A STATISTICIAN /
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Histograms

Values that a variable takes in a data set can be seen
very nicely on plots called “histograms”
tstsc

@ Fundamentals

Bayesian probability theory
Joint probability distribution

Representations of j.p.d.

10%-

5%

\ 50 60 70
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Histograms \

apret apret

4%

15%

3%

10%-

2%

5%
1%

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Bin size affects the form, good bin size is essentially an art: I’'m not aware
of any research on automatic selection of bins. | am aware of at least one
\ computer program that does it right (see http://genie.sis.pitt.edu/).
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Representations of j.p.d.

Histograms

2%

Tl

0 0.1 0.2 0.'3 0.4 0.5 06 07 08 0.9 1

The effect of bin size is not that strong in case of some
distributions (here: uniform distribution).

\
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robability distributions

* There is a sizeable set of known/described ways that values of a
variable can be distributed.

« Some of these: Normal, Log-Normal, Uniform, Beta, Exponential,
Triangular, Bernoulli, Binomial, Weibull, etc.

« Some distributions are very common, e.g., Normal (a.k.a. Gaussian)
distribution.

- Explained by the Central Limit Theorem (a.k.a. “order out of
chaos”):

* When you sum infinitely many random variables, the sum is
going to be distributed normally.

* You don’t really need infinitely many: as few as 12 is enough
when components are uniform, typically 30 or so gives
beautiful Normals.

* There are tests for goodness of fit of data to distributions.

\
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Scatter plots \

salar vs. apret

100
*
T4 R
907 re 4 { *
¢ ¢ tstsc vs. apret
* 100
80+ N * ‘ * R
Mg L 2 ’9 *
*
704 o cesle? o 2R S
MU SN te ¥
. Y 9% <2 R RSN
601 'S :’4» ° DOIR Vs
504 o %y 3 © oo 44 o
%o o %t o P ”Q’ ¢
*e 7 @ » . s %
* e 2 I SR 60 Keds .
“ ¢ e 3 Vo
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Coun @ & . XN N
* G0 * 50- s 0’-/‘ * ey
30 i * * ‘ 2 z PR
s ¢ ’e ¢
& *e * - *Q 3 o
30 /__/"' PN
10 T T T T / ' . * *e
30000 40000 50000 60000 70000 ./,_../ ‘
salar 20 / * z
Plots of data known as scatter plots
give an idea of the joint probability | ' . | |
distribution between two variables. “0 =0 60 e 70 80 90
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-
Correlation )

» We are often looking for the information about tendency to vary
together rather than independently.

» Correlation is a measure of the extent to which two random variables
X &Y are linearly related (watch out: correlation may not capture non-
linear dependences!).

 Originally introduced by Francis Galton to replace causation. Later,
after statisticians had realized that it cannot fully represent causality,
they clearly distanced from it (“Correlation does not mean
causation.”).

« Can make sense (smoking and lung cancer) but can also be very

tricky (examples: hospitals and dying, good surgeon and dying, ice
cream consumption and drowning).

D s L Fundamental Concepts from Statistics /
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Joint probability distribution

Correlation

WHAT'S FREAKING US OUT HERE IS THAT WE'VE
FOUND A CORRELATION BETWEEN OWNINC CATS
AND BEINC STRUCK BY LICATNING

Fundamental Concepts from Statistics

Decision Systerns Laboratory

\




@ Fundamentals ]
Bayesian probability theory
/ Joint probability distribution
Representations of j.p.d.
Correlation matrix \

spend | apret top10 rejr tstsc pacc strat salar
spend L A A S
apret | 0601231: | T T T S S
top10 | 0.675656 A 0.642464 @ L S I T D
reif | 0633544 0 0514958 ' 0643163 =~ | A T S S
tstsc | 0.71491 0782183 : 0798807 @ 0628601 : ~ L R
pacc | -0.23673  -0.302834 ' -0.207505 00715207 0164223 LS R S
strat | -0.561755  -0.458311 ' -0.247857 = -0.283617 '-0.465226 0.131858 @~~~ |
salar | 0.711838 : 0.635852 : 0.637648 : 0606777 : 0.715472 : -0.37524 : -0.347673 : 1:

................................................................................................................................................................................................................................
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/Correlation does not mean causation \

Cliché but certainly true: A single correlation by itself does not
tell us much about the causal structure

SOMEONE SENT ME I GET ONE OF THOSE
ANOTHER ANONYMOUS EMAILS EVERY TIME CORRELATION
EMAIL WITH A LINK I LEAVE YOUR CUBICLE. DO&EU%%}-'%QJLY

TO AN ARTICLE ABOUT
THE WORLDS WORST
BOSSES.

DID YOU THINK I
WOULDNT NOTICE THE
CORRELATION?

Dilbert.com DilbertCartoonist@gmail.com

112811 ©2011 Scott AGAmS, INC, Dt by Universal Uckek

\
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Fundamentals

Inear regression

« Scatter plots portray the relationship between two quantitative
variables. We would like to summarize the relationship more
briefly.

* The simplest interesting relationship is linear (straight-line)
dependence of a response variable y on an explanatory variable x.

« A straight line that describes the dependence of one variable on
another is called a regression line.

« Regression line allows us to predict (approximately) the value of
one variable if we know the value of the other variable.

\
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Linear regression

@ Fundamentals

Bayesian probability theory
Joint probability distribution

We fit a line to the data, the line equation is Y=5b, + b, X

Note1: b,, b, are intercept, coefficient parameters, respectively
Note2: Linear Regression # Linear Model (Y = b, + b, X + b,X?)

Representations of j.p.d.

250.0 T

200.0 T

150.0 Tt

100.0 Tt

50.0 +

0.0

Estimated length vs. height

0.0

50.0

100.0 150.0 200.0 250.0 300.0
length

350.0

DS
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@ Fundamentals

Bayesian probability theory
Joint probability distribution

Linear regression: Prediction

Can we predict what an INFSCI 1000 student will estimate
for height if she estimated the length to be 200 cm?

Representations of j.p.d.

Estimated length vs. height
250.0 1
-]
200.0 Tt
150.0 T
100.0 T
50.0 +
O-O T T T Ll T T
0.0 50.0 100.0 150.0 200.0 250.0 300.0
length

350.0
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Bayesian probability theory
Representations of j.p.d.

Least-squares regression

 How do we actually fit the line to our data points?

* You can visually try to draw a line across the data point
until you are satisfied with the fit, but we would like to
have a procedure that is somewhat objective and

reproducible.

 There are many mathematical ways of fitting a line to a
set of data. The oldest and most commonly used is the

method of least squares.

\
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Least-squares regression )

The idea: minimize the sum of squares of the deviations of
the data points from the line in the vertical direction.

Estimated length vs. height
2500 Tt
.
200.0 T :
150.0 T
-]
-
[~ I
100.0 T L
50.0 +
O-O T T T T T T 1
0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0
length

\ Most statistical packages implement least-squares regression.

DS
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Asymmetry of regression )

Choice of explanatory variable affects the parameters of the
regression line

Estimated length vs. height
250.0 T
200.0 T
150.0 T
100.0 T
50.0 +
0.0 . . . . . . |
0.0 50.0 100.0 1500 200.0 250.0 300.0 3500
length

\
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Asymmetry of regression )

The two regression lines are going to be different in general

Estimated length vs. height
2500 T
2000 T
150.0 T
100.0 T
50.0 +
0.0 . . . . . . |
0.0 50.0 100.0 150.0 2000 250.0 300.0 350.0
length

\
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Linear regression: An example \

Line fitting (or in general curve fitting to the interactions).

e.g., linear regression results of the influence of tstsc
on apret and apgra (175 universities).

50.5%
62.0%

13.2 + 1.02 tstsc, R-sqg(adj)
-78.7 + 2.04 tstsc, R-sq(adj)

apret
apgra

Can be also in multidimensional space.

e.g., linear regression results of the influence of tstsc
and top10 on apret and apgra (175 universities).

52.6%
62.5%

apret
apgra

33.4 + 0.142 topl0 + 0.634 tstsc, R-sqg(adj)
-68.4 + 0.0283 toplO0 + 1.87 tstsc, R-sq(adj)

\
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Joint probability distribution

Bayesian probability theory
Representations of j.p.d.

Fundamentals

/Time series

« Measurements of variables that vary over time.

* This is often a matter of assumption: regular, static data also vary

over time but we assume that they do not.

apret

160

140

120

100

80

60

40

20

0
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Outliers

* Values that come about
because of errors in
measurements,
transcription, etc., or
because of momentary
failure in our assumptions.

 We remove them because
they are potentially violating
our assumptions.

* How to distinguish them?
Typically done “manually.”

Visual inspection is usually
very helpful.

DS

tstsc vs. apret

@ Fundamentals
Bayesian probability theory
Joint probability distribution

Representations of j.p.d.

1 U
7

‘ ,

3 ’

z ’
‘
’
T ' ‘ l

tstsc
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Fundamentals

@® Bayesian probability theory
Joint probability distribution
Representations of j.p.d.

Basic Notations \

« Random variable
 An element/ event whose status is unknown
A=t will show tomorrow.”
« Domain
 The set of values a random variable can take:
 “A=The coin will flip to Head side”: Binary
« “A=Number of Steelers wins in 2015”: Discrete
« “A =% change in Facebook stock in 2015”: Continuous

\

DS
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Fundamentals

/ @® Bayesian probability theory
Joint probability distribution
Representations of j.p.d.

Axioms of Probability (Kolmogorov’s Axioms) \

1. 0sP(A) =1
2. P(true) =1, P(false) =0
3. P(AUB)=P(A) + P(B) - P(AN B)

P(H)=0.5 P(T) =
P(H,H) = P(H,H,H) =
P(X;=X;=X3) =

\
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Fundamentals
@® Bayesian probability theory

Joint probability distribution

Representations of j.p.d.

/Prior (Belief or Knowledge) \

Degree of belief No Snow

in an event in the
absence of any
other information

P(Snow Tomorrow) = 0.9
P(No Snow Tomorrow) = 0.1

n S .— Fundamental Concepts from Statistics /
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@ Bayesian probability theory
Joint probability distribution

Fundamentals ]

Representations of j.p.d.

/Conditioning (Conditional Probability) \

* Probabilistic conditioning specifies how to revise beliefs based
on new information.

« Take all background information into account. This gives the prior
probability.

Slept Liked

 For Example:

P(Slept in class) = 0.5
P(Slept in class | liked class) = 0.25
P(Didn’t sleep in class | liked class) =0.75 |0 0

1 0

ns L Fundamental Concepts from Statistics /
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Fundamentals

@® Bayesian probability theory
Joint probability distribution
Representations of j.p.d.

roduct Rule

P(X,,X,)
P(X,)

Product rule gives an alternative, more intuitive formulation:

P(X19X2)=P(X1 le)P(X2)=P(X2 |X1)P(X1)

Definition of conditional probability: P(Xl | Xz) —

Product rule general form:

P(X,,...X )=P(X,..X | X

t+10°

X )P(X

t,+1’ooo,

Xn)

\
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Fundamentals
@® Bayesian probability theory
Joint probability distribution
Representations of j.p.d.
Chain Rule \

Chain rule is derived by successive application of product rule:

=P(X,,...X X))
= P(Xpses X, DP(X, 1 X0 X, )
=P(X,,..X )P(X _1X,..X )PX |X,...X )

=P(X)P(X,1X)..P(X_ 1X,.,.X )PX 1X,.,X )
-1 ] PX1X,,.. X, )

\
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Fundamentals
@ Bayesian probability theory
Joint probability distribution
Representations of j.p.d.
Bayes theorem \

An easy to prove theorem, derived from the product rule:

From

P(A|B) P(B) = P(A,B)
and

P(B|A) P(A) = P(A,B)
we have

P(A[B)|= P(B|A) / P(B)(P(A)
T

Prior (a.k.a. a-priori) probability

Posterior (a.k.a. a-posteriori)
probability

Bayes theorem gives us a mechanism for

\ changing our opinion in light of new evidence! /
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Fundamentals

@ Bayesian probability theory
Joint probability distribution
Representations of j.p.d.

Bayes theorem and Bayesian statistics \

A versatile and powerful approach that seems to
solve a variety of problems, originating from an
18th century English mathematician, Rev. Thomas
Bayes (http:llen.wikipedia.org/wikilThomas Bayes)

would
%5
how bayes’ rule cracked
*=<.the enigma code,
hunted down russian
submarines & emerged
triumphant from two/@;\
centuries of controversy

clhismacss Bavkaals Fraasmrmiina
sharon bertsch mcgrayne

DS

des

Bayes Theory is so “hot” that a lightly written
book “The Theory That Would Not Die,”
published in 2011, has become a bestseller

Bayesian modeling is reliable and it solves
hard problems.

It can use both, data and expert knowledge.

Recommended video:
http://www.youtube.com/watch?v=8oD6eBkjF90

Fundamental Concepts from Statistics
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Fundamentals
/ Representation

@ Bayesian probability theory
Joint probability distribution

s of j.p.d.

hat is the relation of Bayesian
statistics to classical statistics?

_p(

Classical statisticians: “We have no clue ®.
Probability is a limiting frequency. A nuclear
war is not a repetitive process.”

Bayesians: “0.24 ©. Probability is a measure of belie

D s L Fundamental Concepts from Statistics
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Fundamentals

@ Bayesian probability theory
Joint probability distribution
Representations of j.p.d.

hat is the relation of Bayesian
statistics to classical statistics?

 Classical statisticians accuse Bayesians of “hocus pocus” with the
prior distributions (“How do you know them?”).

- Bayesian statistics comes with so called “limit theorems,” which
say that no matter what distribution you choose for your prior, you
will eventually converge to the true distribution if you observe
enough evidence.

« Of course, there is nothing wrong with starting with “the right
distribution” in the beginning (In other words, it would be unwise to
ignore available statistics).

« But even if you don’t have them, you can still do useful work, even if
you have to just guess the priors.

\

D s L Fundamental Concepts from Statistics /

Decision Systerns Laboratory




Fundamentals
@ Bayesian probability theory
Joint probability distribution
Representations of j.p.d.
@ayes theorem example \

Let the prevalence of syphilis in the population of young people
planning to get married in Pennsylvania be 0.001.

Let a (mandatory) test, required for obtaining the marriage
license have sensitivity of 0.98 and specificity of 0.95.

What is the probability that your fiancée, who tested positive for
syphilis, has syphilis?

P(S|+) = P(+|S)*P(S)/P(+) (Bayes theorem)
P(+) = P(+|S) P(S) + P(+|~S) P(~S) (theorem of total probability)
P(+) = 0.98 0.001 + 0.05 0.999 = 0.05093

P(S|+)|=0.98*0.001 / 0.050930.001]
% A

\P osltoerr;g;é?l.ilz&a. a-poste Prior (a.k.a. a-priori) probability

0.01924 /
D s L Fundamental Concepts from Statistics
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Fundamentals
Bayesian probability theory

Representations of j.p.d.

@ Joint probability distribution

Joint probability distribution

Expresses the probability of events
defined over several random variables

Source: http://postrecession.wordpress.com/tag/risk-aversion/
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Bayesian probability theory
@ Joint probability distribution

Fundamentals
Representations of j.p.d.

Joint probability distribution )

Expresses the probability of events

defined over several random variables : 4 ;
s ad e LSS, |
z B BN
= A i TN
2 154 : : ' I = )
- 5 : S :
g | I A '
E e ' g ‘ ' J i
. 1 o i
- ' « ;
e.d., probability distribution £ ' !
over grades and the 8 05|
amount of work in a o S
university course o
£ o.ls
S 19
0.8 i \ 9
i |
. j |
02 i
\ o
n S Source: http://www.sciencedirect.com/science/article/pii/S0013795208002731
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Bayesian probability theory

@ Joint probability distribution
Representations of j.p.d.

K]oint probability distribution \

Joint probability distributions are much more interesting
than probability distributions over single variables

Why?

Given the value of some of the variables in the join
probability distribution, we can estimate the
probability distributions over the remaining variables.

e.g., we can predict the grade distribution in
a university course given the amount of
work that students put into the course

\
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apret

Joint probability distributions

salar vs. apret

Bayesian probability theory
@ Joint probability distribution
Representations of j.p.d.

Fundamentals ]

Sometimes, we are interested in the

o linear relationship between variables
: o ¢ and derive a linear regression line
ol R S S based on the observed data.
. ¢ ¢ tStW’
a0 . * y . 100
© 'S
“‘:: ": * . / . 0"
70- ° % o M . o’z ‘ .
o :‘ .‘0’. ,’ g
£0- ¢ o 2 . :g?’ * 80- .
*¢ ? 4
e TN
“ ‘0 ” Q’ * ¢ . -
40- Al N R ¢ 60 ¢
Y . ** s ”y
* L 2 ’~ L g * ”
MRS A ® 501 S
30- . - $s }‘
o & N @ v
M . ik
201 © 401
¢ ) ? o
30 /e “
10 T T T T i __,/"'/ TS
30000 40000 50000 60000 70000 ) '
salar ’/ . * N
Plots of data known as scatter plots 2 4 $
give an idea of the joint probability
distribution between two variables. 1% - . na na

tstsc
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Marginal probability distribution

Fundamentals
Bayesian probability theory

Representations of j.p.d.

@ Joint probability distribution

&T.a
Defined as the z ﬁg«
probability distribution { /77N .
over a single variable 3 /’7\ ~ Thi sty
8 / g \\\Q“\\ = illustrative default
(when there are more =< S —
. 1 2 3 5 6 7
variables ©). 7] e
Can be derived froma | [,
joint probability R b
distribution. S 5] BHen
;| cursoon TR
& LR
E 5 = I:. o 1-
g
2_
1_
o 1 2 3 4 5 6 7 Probabilty density (°C-)

Climate sensitivity (°C)
Source: http://www.nature.com/nature/journal/v458/n7242/fig tab/nature08017 F1.html
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@ Joint probability distribution
Representations of j.p.d.

/Conditional probability distribution \

Fundamentals ]

Once we know the value of one of the variables, we can make a
statement about the probability distribution over the other

variable L Ny

.
-
(4]
.

—_—
L

It is going to be
different for

Joint probability of a,,,, and M,

different values \l
H 0 /‘WW ]
of the first 4 “
variable 5
Esga% Fundamental Concepts from Statistics



@ Joint probability distribution

Representations of j.p.d.
Venn diagrams \

Fundamentals
Bayesian probability theory

Source: http://en.wikipedia.org/wiki/Conditional probability

Decision Systerns Laboratory
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Fundamentals
Bayesian probability theory
/ @ Joint probability distribution
Representations of j.p.d.
Conditional probability \

Definition: P(A|B) = P(A,B) / P(B)

PAIB) =7 | B,
P(AIB;)=? z

D S .— Fundamental Concepts from Statistics /

Decision Systerns Laboratory




//j;dependence

Fundamentals
Bayesian probability theory
@ Joint probability distribution

Representations of j.p.d.

Mathematical definition: ALB < P(A,B) = P(A) P(B)

Fundamental Concepts from Statistics /
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Fundamentals
Bayesian probability theory

@ Joint probability distribution
Representations of j.p.d.

/Independence: Common sense \

The following is straightforward to derive from the
definition of independence (assuming P(B) > 0):

ALB © P(A|B) = P(A)

/ .
;A B, \
ALB, ? |' B;
ALB, ? | B |
ALB, ? \ Z
An B, |
\ *
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Representations of the
Joint Probability Distribution
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Fundamentals

Bayesian probability theory

Joint probability distribution
@® Representations of j.p.d.

/Probabilistic knowledge representations )

« A probabilistic (Bayesian) model encodes the joint
probability distribution over its variables.

 Knowledge of the joint probability distribution is sufficient

to derive any marginal and conditional probability over the
model’s variables.

555@?15% Fundamental Concepts from Statistics /
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/Probability trees

DS
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The simplest and quite natural graphical representation of a
joint probability distribution over discrete variables

p=0.00098

disease p=0.00002

_ p=0.04995

O itive

negate. p=0.94905
P(disease present A test positive) =P(DN +) =0.00098
P(disease present A test negative) =P(DN +) =0.00002
P(disease absent A test positive) =P(~D N +) =0.04995
P(disease absent A test negative) = P(~D N +) = 0.94905

Fundamentals
Bayesian probability theory
Joint probability distribution

@® Representations of j.p.d.
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Fundamentals

Bayesian probability theory

Joint probability distribution
@® Representations of j.p.d.

/Computation in probability trees )

We can calculate any marginal or conditional probability distribution
from the joint probability distribution encoded in the tree.

P(D,+)=0.00098

P(D,-)=0.00002

o S P(~D,+)=0.04995

P(~D,-)=0.94905

disease 5

What is the probability of the disease present?
P(D) =0.00098+0.00002 = 0.001 <€

\
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/Computation in probability trees )

Fundamentals

Bayesian probability theory

Joint probability distribution
@® Representations of j.p.d.

We can calculate any marginal or conditional probability distribution
from the joint probability distribution encoded in the tree.

P(D,+)=0.00098

disease . P(D,-)=0.00002

P(~D,+)=0.04995

P(~D,-)=0.94905

What is the probability of the disease present given a positive test result?
Observation of a positive test result makes some of the branches of the
tree impossible. What we need to do is just renormalize the remaining,
possible (i.e., those that are compatible with the evidence) branches!

P(D|+) =0.00098/(0.00098+0.04995) ~ 0.01924 < /
DS
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Fundamentals
Bayesian probability theory

Joint probability distribution
@® Representations of j.p.d.

/What is wrong with probability trees? )

Trees grow exponentially with the number of variables

disease

For n binary variables, we will have 2" branches.
When n=10, the total number of branches is 1,024

When n=11, it is 2,048

\ When n=20, it is 1,048,576 (which is a lot ©) /
D S L Fundamental Concepts from Statistics
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Fundamentals

Bayesian probability theory

Joint probability distribution
@® Representations of j.p.d.

/Great idea (only 30-40 years old) )

Use independences among
variables in the joint probability
distribution to reduce the number
of parameters in its representation!

Due to seminal work on probabilistic independence
by A. Philip Dawid and Judea Pearl

\ ] jz:v /
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Fundamentals

Bayesian probability theory

Joint probability distribution
@® Representations of j.p.d.

All brilliant ideas are obvious )
(once we have them ©)

Then why none of
the civilizations in
the Americas had
it?

Is the concept of a
\wheel obvious?

Fundamental Concepts from Statistics
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Fundamentals
Bayesian probability theory
Joint probability distribution
/ @® Representations of j.p.d.
Factorability of the joint probability distribution )

Every joint probability distribution can be factorized, i.e.,
rewritten as a product of prior and conditional probability
distributions of each of the model’s variables

f(X,y, Xgy wony X)) = K4 | Xy Xy eoey X)) FXy | Xy vy X,) o
f(xn-z I Xn-1’ Xn) f(Xn-1 | Xn) f(Xn)

e.g., four variables (a, b, c, d), we have:
P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(C|D) P(D)
P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(D|C) P(C)

P(A,B,C,D)=P(B|A,C,D) P(D|A,C) P(A[C) P(C)

There are n! different directed graphs corresponding to various ways
of factorizing a joint probability distribution over n variables.

\ For n=4, we have 4!=24 different factorizations. /

D s .— Fundamental Concepts from Statistics

Decision Systerns Laboratory




\

Joint probability distribution

Fundamentals
Bayesian probability theory
/ @® Representations of j.p.d.
Factorability of the joint probability distribution

« Any factorization can be simplified if we consider
independencies among variables.

* Those factorizations that become the simplest are
better than others in terms of efficiency of
representation.

e.g., suppose we know that BLD|C, DLA|C, and A1C
We can simplify

P(A,B,C,D)=P(B|A,C,D) P(D|A,C) P(A|C) P(C)
into

P(A,B,C,D)=P(B|A,C) P(D|C) P(A) P(C)

\
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Bayesian probability theory
Joint probability distribution

Fundamentals
/ @® Representations of j.p.d.
Bayesian networks

* This underlies the very idea of Bayesian networks.

 We draw a directed graph with arc from the conditioning
variables to the variables in the factorization.
Er—(E

P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(C|D) P(D) — — '&

P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(D|C) P(C) \ (B D

O RO
P(A,B,C,D)=P(B|A,C,D) P(D|A,C) P(A|C) P(C) 2
‘

BLD|C, DLA|C, ALC

(AD+—CC)
P(A,B,C,D)=P(B|A,C) P(D|C) P(A) P(C) 3&0

\

~=
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Fundamentals

/ Bayesian networks

graph (DAG) consisting of:

\

DS

Bayesian probability theory
Joint probability distribution

@® Representations of j.p.d.

A Bayesian network [Pearl 1988] is a directed acyclic

* The qualitative part, encoding a
domain’'s variables (nodes) and

the probabilistic (usually causal)
influences among them (arcs).

* The quantitative part, encoding
the joint probability distribution
over these variables.

Fundamental Concepts from Statistics /
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Bayesian networks: Numerical parameters

Fundamentals

Bayesian probability theory

Joint probability distribution ]

@® Representations of j.p.d.

» |a1_below_20 0.0416
a2 2029 0.2012
a3 29 45 0.3079
ad4_45 60 0.2585
ab_60_up 0.1504

\

Decision Systerns Laboratory

Prior probability distribution tables for

nodes without predecessors (Age)

Conditional probability
distributions tables for
nodes with predecessors

(HPV, Pap test, Cervix)

Age al below 20| a2 20 295 | a3.295 45 | a4 45 60 | a5 60 up
NA 0.8652 0.8387 0.7904 0.8055 0.8851
Negative 0.069 0.0901 0.1782 0.1765 0.1012
p |Posttive 0.0613 0.0282 0.0142 0.0082
Qns 0.0045 0.0045 0.0032 0.0038 0.0055

Fundamental Concepts from Statistics
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ﬂeasoning in Bayesian networks

Fundamentals
Bayesian probability theory

@® Representations of j.p.d.

Joint probability distribution

The most important type of reasoning in Bayesian networks is
updating the probability of a hypothesis (e.g., a diagnosis)
given new evidence (e.g., medical findings, test resulits).

Example:

What is the probability of
invasive cervical cancer in
a (female) patient with
high grade dysplasia with
a history of HPV infection?

P(CxCa | HPV=positive, HSIL=yes)

Decision Systerns Laboratory
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Bayesian probability theory
Joint probability distribution
@® Representations of j.p.d.

/Probability trees and Bayesian networks

probability tree

p=0.00098

disease p=0.00002

p=0.04995

p=0.94905

\

DS

Bayesian network

p |present { 0.001

absent 0.999
Test Disease |absent|present
b [negative{ 055 0.02
postive : 005 038

The two representations are equivalent
But, when there are independences in the domain,
Bayesian networks are much, much more efficient!

Decision Systerns Laboratory
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Bayesian probability theory

Joint probability distribution
@® Representations of j.p.d.

HEPAR Il Model
@&

= ot

\ \ / ¢  Reactive hepatitis

. . O Toxic hepatitis
~]© Hepatic steatosis ©  Hepatic fibrosis . present 2%|
O Carcinoma present 4%|
present 10% ] present 4%/| t 6%]] absent 96% [l | absent S6% NN |
= o | — S
e absent 9a% [l |
) Functional hyperbilir...
[© Chronic hepatitis o Cirrhosis o = ]
active  12%]] decompensate 5%]| present 7%l
persistent 5%| compensate 2% present 38% ] | —|absent 92% [ |
absent  82% | absent 2% | absent 62%| |

E—

\ 70 variables; 2,139 numerical parameters (instead of over 270-1=~ 1021!)

L Fundamental Concepts from Statistics
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Bayesian probability theory

Joint probability distribution
@® Representations of j.p.d.

/Independences: Markov condition )

» Allows to read back dependences and independences
from the graph.

 Informally speaking, it is an assumption that ties directed
probabilistic graphs with probability, specifying how a
directed graphs represents independence.

* A node is independent of its non-descendants given its
predecessors (D-separation).

\
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Fundamentals

Markov condition: Example

Bayesian probability theory
Joint probability distribution

@® Representations of j.p.d.

P(H,G,W,R,B,S, F)=P(H|G,F) P(G|R,B,S) P(W|S) P(R) P(B) P(S) P(F)

© Rain (R)

Present10%||
bsent 90%| |

This graph implies the following

(conditional) independences:

RLB, RLS, BLS, RLF, BLF, SLF
RLW, BLW, WLF, GLF

RLH|G, BLH|G, SLH|G, WLH|G
WL*|S

RLW|G,S, BLW|G,S

DS

O Water Bill (W)
High36% ([
Low 64%| |

© Broken Bottle (B)| [© Sprinkler (8)
Present 5%| On10%||
IAbsent 95%| 0ff90% \
© Wet Grass (G)

et24%]]]
Dry 76%|

Good 51% ]

Poor 49%|

Decision Systerns Laboratory

O Fertilizer (F)

Fertilizer 30%]]
NoFertilizer70% |

¥
O Healthy Grass (I-m/
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Joint probability distribution
/ @ Representations of j.p.d.
Equation-based systems and graphical models \

classsize = (nstud * cload) | (nfac * tload)
facsal = (oinc + tuition * nstud) | (nfac * (1 + overh)) «—— Core equations
stratio = nstud | nfac
cload =15

tload = 6
< nstud = 22102 —— Equations for exogenous variables

nfac = 3006
oinc = 30000000
tuition = 12000
overh = 0.48

\L

Together they determine ___,
the structure of the model

\
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Reversibility of causal ordering

classsize = (nstud * cload) | (nfac * tload)
facsal = (oinc + tuition * nstud) | (nfac * (1 + overh))
stratio = nstud | nfac

cload =15 _ .
tload = 6 Setting stratio to be exogenous

< nstud = 22102 at the expense of nfac
rac=23086— stratio =10

oinc = 30000000
tuition = 12000
overh = 0.48

ﬁ Restructured univ.eqn =] E3

The new model structure ——

to Herb Simon (early 1950s)

DS
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\ Explication of the asymmetries due

Fundamentals
Bayesian probability theory
Joint probability distribution
@® Representations of j.p.d.
ﬂquatlon-based systems: \




Fundamentals

Bayesian probability theory

Joint probability distribution
@® Representations of j.p.d.

/Advantages of directed graphs

- May be built to reflect the causal structure of a model
(helps with obtaining insight into the problem)

- Can accommodate representation of uncertainty
- Can be reconfigured as needed

- Have sound theoretical foundations: We are dealing here
with probability theory and decision theory

- We can talk (almost) the same language with statisticians,
philosophers, and scientists

\
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Family of directed graphs (a bigger picture)

Fundamentals
Bayesian probability theory
Joint probability distribution

classsize = (nstud * cload) | (nfac * tload)

facsal = (oinc + tuition * nstud) | (nfac * (1 + overh))
stratio = nstud | nfac
cload =15

< tload =6
nstud = 22102
nfac = 3006

Both, systems of equations and joint probability
distributions can be pictured by directed acyclic graphs.

\

@® Representations of j.p.d.

(a.k.a. “influence nets,” “causal diagrams,” etc.)
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/G)Q Further Readings \
2.

- GeNie Software Documentation:

https://dslpitt.org/genie/wiki/Main_Page

- An Introduction to Statistical Learning with Applications in

R: http://Iwww-bcf.usc.edu/~gareth/ISL/ (Chapter 1-2)

- Probabilistic Programming and Bayesian Methods for

Hackers: (Chapter 1)
http://nbviewer.jupyter.org/github/CambDavidsonPilon/

Probabilistic-Programming-and-Bayesian-Methods-for-

Hackers/blob/master/Chapter1 Introduction/

Chapter1.ipynb

- Causation, Prediction, and Search:

https://www.cs.cmu.edu/afs/cs.cmu.edu/project/learn-43/

lib/photoz/.g/scottd/fullbook.pdf (Chapter 1)
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