# Fundamental Concepts from Statistics

# Chirayu Wongchokprasitti, PhD

**University of Pittsburgh** 

**Center for Causal Discovery** 

Department of Biomedical Informatics <u>chw20@pitt.edu</u> <u>http://www.pitt.edu/~chw20</u>



Fundamental Concepts from Statistics -

### Overview

### Fundamentals

(Uncertainty, probability, variance, sampling, randomness, elements of data analysis. Describing and displaying data, correlation.)

### Bayes theorem and Bayesian probability theory

### Joint probability distribution

(The foundation of any analytic technique. Conditional probability distribution, Bayes theorem, prior and posterior probability distribution. Tools for representing joint probability distributions: probability trees, Bayesian networks, equationbased models)

Representations of the joint probability distribution







### Why statistics?

#### "... in this world nothing can be said to be certain, except death and taxes" --- Benjamin Franklin in a letter to his friend M. Le Roy

(\*) *The Complete Works of Benjamin Franklin*, John Bigelow (ed.), New York and London: G.P. Putnam's Sons, 1887, Vol. 10, page 170

- In other words, "Uncertainty is prominent around us."
- It is an inherent part of all information and all knowledge.
- We need to deal with uncertainty in empirical work.
- Because this class focuses on analytics, we are going to review some basic tools for looking at data and making inferences from data.







### **Flipping Coin Probabilities**



### Uncertainty manifested in data

|      | Age | Sex    | Smoking_Status | Lung_Cancer |
|------|-----|--------|----------------|-------------|
| 1    | 43  | Male   | Smoker         | Yes         |
| 2    | 55  | Female | NonSmoker      | Yes         |
| 3    | 27  | Female | Smoker         | No          |
| 4    | 18  | Male   | NonSmoker      | No          |
| 5    | 81  | Female | Smoker         | No          |
|      |     |        |                |             |
| 9873 | 72  | Male   | NonSmoker      | Yes         |

Data like the above are not at all atypical.

Some sources of uncertainty:

- Errors in measurement (e.g., cancer misdiagnosed).
- Subjects providing wrong information (e.g., smoking status, age).
- Latent variables that we did not control for (e.g., asbestos exposure).
- Subject selection (possible bias).
- Bad luck.



# A Brief Review of Probability Theory and Statistics



### Why probability theory and statistics?

# *"The theory of probabilities is basically only common sense reduced to a calculus."*

("... la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul.")

- Pierre-Simon Laplace, "Philosophical Essay on Probabilities" (1814)





# Why probability theory and statistics?

- "Statistics is the study of the collection, organization, analysis, and interpretation of data." Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms
- •Statistics is **the** mathematical discipline for processing and interpreting data, it is closely related probability theory.
- Departure from probability theory leads to provable anomalies (e.g., "Dutch book" argument).
- •All (with some exceptions) knowledge is uncertain and, hence, best expressed by means of probabilities and probability distributions.



### Some features of statistical analysis

- Questions that we ask (in statistics but also in science in general) concern systems, i.e., parts of the real world that can be reasonably studied in separation.
- We want to make inference from a sample to a population (unless we can make the entire population a sample)!
- Ideal sampling should be random, giving every member of the population an equal chance of being selected
- In that case, we hope (but have a whole statistics for us) that the sample is representative, i.e., has approximately the characteristics of the population.
- If the sample is not random, then unknown/known factors may bias the sample (such as experimenter's biases, political factors, etc.).
- Even in case of random sampling (the ideal) there is no guarantee for a representative sample, but we can get arbitrarily close (in terms of probability) to the population.



### **Describing and displaying data**

# Statistics provides tools for describing and displaying data

#### **Example:**

- What causes low student retention in U.S. colleges?
- Over 120 variables (only 8 in the picture on the right-hand side) measured across 204 universities (total of over 24,000 numbers).
- Note variables (columns) and data points (rows).

| -     | 1      |       |        | 1      | 1      |       |       |
|-------|--------|-------|--------|--------|--------|-------|-------|
| spend | apret  | top10 | rejr   | tstsc  | расс   | strat | salar |
| 9855  | 52.5   | 15    | 29.474 | 65.063 | 36.887 | 12    | 60800 |
| 10527 | 64.25  | 36    | 22.309 | 71.063 | 30.97  | 12.8  | 63900 |
| 7904  | 37.75  | 26    | 25.853 | 60.75  | 41.985 | 20.3  | 57800 |
| 6601  | 57     | 23    | 11.296 | 67.188 | 40.289 | 17    | 51200 |
| 7251  | 62     | 17    | 22.635 | 56.25  | 46.78  | 18.1  | 48000 |
| 6967  | 66.75  | 40    | 9.718  | 65.625 | 53.103 | 18    | 57700 |
| 8489  | 70.333 | 20    | 15.444 | 59.875 | 50.46  | 13.5  | 44000 |
| 9554  | 85.25  | 79    | 44.225 | 74.688 | 40.137 | 17.1  | 70100 |
| 15287 | 65.25  | 42    | 26.913 | 70.75  | 28.276 | 14.4  | 71738 |
| 7057  | 55.25  | 17    | 24.379 | 59.063 | 44.251 | 21.2  | 58200 |
| 16848 | 77.75  | 48    | 26.69  | 75.938 | 27.187 | 9.2   | 63000 |
| 18211 | 91     | 87    | 76.681 | 80.625 | 51.164 | 12.8  | 74400 |
| 21561 | 69.25  | 58    | 44.702 | 76.25  | 26.689 | 9.2   | 75400 |
| 20667 | 65     | 68    | 22.995 | 75.625 | 28.038 | 11    | 66200 |
| 10684 | 61.75  | 26    | 8.774  | 66     | 33.99  | 9.5   | 52900 |
| 11738 | 74.25  | 32    | 25.449 | 66.875 | 27.701 | 12    | 63400 |
| 10107 | 74     | 43    | 11.315 | 71     | 29.096 | 16.2  | 66200 |
| 7817  | 65.75  | 36    | 33.709 | 64.25  | 52.548 | 17.7  | 54600 |
| 7050  | 26     | 11    | 0      | 55.313 | 55.651 | 18.8  | 59500 |
| 9082  | 83.5   | 73    | 64.668 | 77.375 | 43.185 | 13.6  | 66700 |
| 11706 | 60     | 56    | 16.937 | 73.75  | 39.479 | 12.7  | 62100 |
| 7643  | 49.25  | 23    | 36.635 | 62.813 | 39.302 | 18.7  | 57700 |
| 25734 | 90     | 77    | 67.758 | 80.938 | 44.133 | 10    | 80200 |
| 20155 | 86     | 84    | 69.31  | 79.688 | 48.766 | 17.6  | 74000 |
| 29852 | 94.5   | 84    | 75.009 | 81.313 | 51.363 | 10.6  | 74100 |
| 7980  | 68.5   | 34    | 9.122  | 63.875 | 35.294 | 16.3  | 53100 |
| 8446  | 57     | 23    | 29.65  | 64.625 | 36.181 | 14.8  | 63200 |
| 24636 | 92.75  | 88    | 70.653 | 81.875 | 43.464 | 12.8  | 80300 |
| 7396  | 68.75  | 34    | 13.469 | 63.889 | 39.05  | 14.8  | 51900 |
| 24256 | 81.25  | 68    | 35.556 | 75     | 26.736 | 11.5  | 68200 |
| 7263  | 54     | 28    | 49.583 | 68.125 | 42.149 | 13.4  | 48839 |
| 7005  | 46.75  | 50    | 36.236 | 68.188 | 33.875 | 22.5  | 59600 |
| 10454 | 77.75  | 34    | 23,784 | 67.5   | 33,333 | 11.2  | 70000 |



Fundamental Concepts from Statistics -

### Measures of central tendency and spread

**Measures of central tendency:** 

- mode (value occurring with the greatest frequency)
- median (mid-most score in a series)
- mean (arithmetic average)
- trimmed mean

#### Measures of spread:

- ranges: crude range (highest, lowest), extended range (or corrected range) adds one unit to the range (to account for a possible error in measurement), trimmed ranges (drop x% of extreme points on both sides)
- variance  $\sigma^2 = \sum_i (\mathbf{x}_i \mu)^2 / n$
- standard deviation  $\sigma = sqrt(\sigma^2)$
- average deviation  $\Sigma_i (x_i \mu)/n$



| <b>Basic statisti</b> | cs       |                                             |      |                        |  |  |
|-----------------------|----------|---------------------------------------------|------|------------------------|--|--|
|                       |          | Apgr                                        | а    |                        |  |  |
|                       |          | Mean                                        | 56   | .721 07 647            |  |  |
| _                     | _        | Median                                      |      | 55.7085                |  |  |
| Exc                   | el       | Mode                                        |      | 72                     |  |  |
|                       |          | Standard Deviation                          | n 18 | 18.07709676            |  |  |
|                       |          | Variance                                    | 32   | 326.7814274            |  |  |
|                       |          | Kurtosis                                    | -0.5 | 54450128               |  |  |
| GeNIe                 |          | Skewness                                    | 0.0  | 089185832              |  |  |
| 1                     |          | Range<br>Minimum<br>Maximum<br>Sum<br>Count |      | 76.5<br>18.75<br>95.25 |  |  |
|                       |          |                                             |      |                        |  |  |
|                       |          |                                             |      |                        |  |  |
|                       |          |                                             |      | 96 42.5 83<br>17 0     |  |  |
| $\lambda$             |          |                                             |      |                        |  |  |
| Mean                  | Variance | StdDev                                      | Min  | Max                    |  |  |

1

|       | Mean    | Variance     | StdDev  | Min    | Max    | Count |
|-------|---------|--------------|---------|--------|--------|-------|
| spend | 10974.5 | 3.02507e+007 | 5500.07 | 4125   | 35863  | 170   |
| apret | 56.7211 | 326.781      | 18.0771 | 18.75  | 95.25  | 170   |
| top10 | 38.4588 | 547.859      | 23.4064 | 8      | 98     | 170   |
| rejr  | 30.6542 | 292.345      | 17.0981 | 0      | 84.067 | 170   |
| tstsc | 66.1642 | 48.6549      | 6.97531 | 48.125 | 87.5   | 170   |
| pacc  | 43.1731 | 171.746      | 13.1052 | 8.964  | 76.253 | 170   |
| strat | 16.0865 | 16.0521      | 4.0065  | 7.2    | 29.2   | 170   |
| salar | 61357.6 | 9.60946e+007 | 9802.79 | 38640  | 87900  | 170   |





### **Standard deviation**





Fundamental Concepts from Statistics -





Bin size affects the form, good bin size is essentially an art: I'm not aware of any research on automatic selection of bins. I am aware of at least one computer program that does it right (see <u>http://genie.sis.pitt.edu/</u>).





# The effect of bin size is not that strong in case of some distributions (here: uniform distribution).



## **Probability distributions**

- There is a sizeable set of known/described ways that values of a variable can be distributed.
- Some of these: Normal, Log-Normal, Uniform, Beta, Exponential, Triangular, Bernoulli, Binomial, Weibull, etc.
- Some distributions are very common, e.g., Normal (a.k.a. Gaussian) distribution.
- Explained by the Central Limit Theorem (a.k.a. "order out of chaos"):
  - When you sum infinitely many random variables, the sum is going to be distributed normally.
  - You don't really need infinitely many: as few as 12 is enough when components are uniform, typically 30 or so gives beautiful Normals.
- There are tests for goodness of fit of data to distributions.





### Correlation

- We are often looking for the information about tendency to vary together rather than independently.
- Correlation is a measure of the extent to which two random variables X & Y are linearly related (watch out: correlation may not capture nonlinear dependences!).
- Originally introduced by Francis Galton to replace causation. Later, after statisticians had realized that it cannot fully represent causality, they clearly distanced from it ("Correlation does not mean causation.").
- Can make sense (smoking and lung cancer) but can also be very tricky (examples: hospitals and dying, good surgeon and dying, ice cream consumption and drowning).







## **Correlation matrix**

|       | spend     | apret     | top10     | rejr       | tstsc     | pacc                  | strat     | salar |
|-------|-----------|-----------|-----------|------------|-----------|-----------------------|-----------|-------|
| spend | 1         |           |           |            |           | 8<br>8<br>8<br>8<br>8 |           |       |
| apret | 0.601231  | 1         |           |            |           |                       |           |       |
| top10 | 0.675656  | 0.642464  | 1         |            |           |                       |           |       |
| rejr  | 0.633544  | 0.514958  | 0.643163  | 1          |           |                       |           |       |
| tstsc | 0.71491   | 0.782183  | 0.798807  | 0.628601   | 1         |                       | 0         |       |
| pacc  | -0.23673  | -0.302834 | -0.207505 | -0.0715207 | -0.164223 | 1                     |           |       |
| strat | -0.561755 | -0.458311 | -0.247857 | -0.283617  | -0.465226 | 0.131858              | 1         |       |
| salar | 0.711838  | 0.635852  | 0.637648  | 0.606777   | 0.715472  | -0.37524              | -0.347673 | 1     |





#### **Correlation does not mean causation** Cliché but certainly true: A single correlation by itself does not tell us much about the causal structure 50 SOMEONE SENT ME I GET ONE OF THOSE DilbertCartoonist@gmail. CORRELATION ANOTHER ANONYMOUS EMAILS EVERY TIME DOES NOT IMPLY EMAIL WITH A LINK I LEAVE YOUR CUBICLE. CAUSATION. TO AN ARTICLE ABOUT DID YOU THINK I THE WORLD'S WORST WOULDN'T NOTICE THE BOSSES. CORRELATION?



### Linear regression

- Scatter plots portray the relationship between two quantitative variables. We would like to summarize the relationship more briefly.
- The simplest interesting relationship is linear (straight-line) dependence of a response variable y on an explanatory variable x.
- A straight line that describes the dependence of one variable on another is called a regression line.
- Regression line allows us to predict (approximately) the value of one variable if we know the value of the other variable.



### Linear regression

We fit a line to the data, the line equation is  $Y = b_0 + b_1 X$ Note1:  $b_0$ ,  $b_1$  are intercept, coefficient parameters, respectively Note2: Linear Regression  $\neq$  Linear Model ( $Y = b_0 + b_1 X + b_2 X^2$ )





### **Linear regression: Prediction**

Can we predict what an INFSCI 1000 student will estimate for height if she estimated the length to be 200 cm?





– Fundamental Concepts from Statistics -

### **Least-squares regression**

- How do we actually fit the line to our data points?
- You can visually try to draw a line across the data point until you are satisfied with the fit, but we would like to have a procedure that is somewhat objective and reproducible.
- There are many mathematical ways of fitting a line to a set of data. The oldest and most commonly used is the method of least squares.



### **Least-squares regression**

# The idea: minimize the sum of squares of the deviations of the data points from the line in the vertical direction.



#### Most statistical packages implement least-squares regression.



## Asymmetry of regression

# Choice of explanatory variable affects the parameters of the regression line





### Asymmetry of regression

#### The two regression lines are going to be different in general







### Linear regression: An example

Line fitting (or in general curve fitting to the interactions).

e.g., linear regression results of the influence of *tstsc* on *apret* and *apgra* (175 universities).

apret = 13.2 + 1.02 tstsc, R-sq(adj) = 50.5%
apgra = -78.7 + 2.04 tstsc, R-sq(adj) = 62.0%

Can be also in multidimensional space.

e.g., linear regression results of the influence of *tstsc* and *top10* on *apret* and *apgra* (175 universities).

```
apret = 33.4 + 0.142 top10 + 0.634 tstsc, R-sq(adj) = 52.6%
apgra = -68.4 + 0.0283 top10 + 1.87 tstsc, R-sq(adj) = 62.5%
```



### **Time series**

- Measurements of variables that vary over time.
- This is often a matter of assumption: regular, static data also vary over time but we assume that they do not.



### **Outliers**

- Values that come about because of errors in measurements, transcription, etc., or because of momentary failure in our assumptions.
- We remove them because they are potentially violating our assumptions.
- How to distinguish them? Typically done "manually." Visual inspection is usually very helpful.




### **Bayesian Probability Theory**



#### **Basic Notations**

- Random variable
  - An element / event whose status is unknown
  - A = "It will snow tomorrow."
- Domain
  - The set of values a random variable can take:
  - "A = The coin will flip to Head side": Binary
  - "A = Number of Steelers wins in 2015": Discrete
  - "A = % change in Facebook stock in 2015": Continuous





### Axioms of Probability (Kolmogorov's Axioms)

1. 0 ≤ P(A) ≤ 1 2. P(true) = 1, P(false) = 0 3. P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

P(H) = 0.5 P(H,H) = P(H,H) = P(H,H,H) =  $P(X_1 = X_2 = X_3) =$ 





### Conditioning (Conditional Probability)

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- Take all background information into account. This gives the prior probability.
- For Example:

P(Slept in class) = 0.5 P(Slept in class | liked class) = 0.25 P(Didn't sleep in class | liked class) = 0.75

| Slept | Liked |
|-------|-------|
| 0     | 1     |
| 0     | 1     |
| 1     | 0     |
| 0     | 0     |
| 1     | 0     |
| 1     | 1     |
| 0     | 1     |
| 1     | 0     |



### **Product Rule**

**Definition of conditional probability:** 

$$P(X_1 | X_2) = \frac{P(X_1, X_2)}{P(X_2)}$$

**Product rule gives an alternative, more intuitive formulation:** 

$$P(X_1, X_2) = P(X_1 | X_2) P(X_2) = P(X_2 | X_1) P(X_1)$$

Product rule general form:

$$P(X_1,...,X_n) = P(X_1,...,X_t | X_{t+1},...,X_n)P(X_{t+1},...,X_n)$$



### Chain Rule

Chain rule is derived by successive application of product rule:

$$= P(X_{1},...,X_{n-1},X_{n})$$

$$= P(X_{1},...,X_{n-1})P(X_{n} | X_{1},...,X_{n-1})$$

$$= P(X_{1},...,X_{n-2})P(X_{n-1} | X_{1},...,X_{n-2})P(X_{n} | X_{1},...,X_{n-1})$$

$$= ...$$

$$= P(X_{1})P(X_{2} | X_{1})...P(X_{n-1} | X_{1},...,X_{n-2})P(X_{n} | X_{1},...,X_{n-1})$$

$$= \prod_{i=1}^{n} P(X_{i} | X_{1},...,X_{i-1})$$



### **Bayes theorem**



### **Bayes theorem and Bayesian statistics**

A versatile and powerful approach that seems to solve a variety of problems, originating from an 18<sup>th</sup> century English mathematician, Rev. Thomas

Bayes (<u>http://en.wikipedia.org/wiki/Thomas\_Bayes</u>)

the theory that would that would that would the mot die the would how bayes' rule cracked the enigma code, hunted down russian submarines & emerged triumphant from two centuries of controversy sharon bertsch mcgrayne

Bayes Theory is so "hot" that a lightly written book "The Theory That Would Not Die," published in 2011, has become a bestseller

Bayesian modeling is reliable and it solves hard problems.

It can use both, data and expert knowledge.

Recommended video: http://www.youtube.com/watch?v=8oD6eBkjF9o

Fundamental Concepts from Statistics -





Fundamentals

 Bayesian probability theory Joint probability distribution Representations of j.p.d.

**Fundamentals** 

 Bayesian probability theory Joint probability distribution Representations of j.p.d.

# What is the relation of Bayesian statistics to classical statistics?



Classical statisticians: "We have no clue 😕. Probability is a limiting frequency. A nuclear war is not a repetitive process."

**Bayesians:** "0.24 <sup>(ii)</sup>. Probability is a measure of belief"



# What is the relation of Bayesian statistics to classical statistics?

- Classical statisticians accuse Bayesians of "hocus pocus" with the prior distributions ("How do you know them?").
- Bayesian statistics comes with so called "limit theorems," which say that no matter what distribution you choose for your prior, you will eventually converge to the true distribution if you observe enough evidence.
- Of course, there is nothing wrong with starting with "the right distribution" in the beginning (In other words, it would be unwise to ignore available statistics).
- But even if you don't have them, you can still do useful work, even if you have to just guess the priors.



#### **Bayes theorem example**



- Let a (mandatory) test, required for obtaining the marriage license have sensitivity of 0.98 and specificity of 0.95.
- What is the probability that your fiancée, who tested positive for syphilis, has syphilis?

P(S|+) = P(+|S)\*P(S)/P(+) (Bayes theorem)

 $P(+) = P(+|S) P(S) + P(+|\sim S) P(\sim S)$  (theorem of total probability)

 $P(+) = 0.98 \ 0.001 + 0.05 \ 0.999 = 0.05093$ 

0.01924



Posterior (a.k.a. a-posteriori) probability

**Prior** (a.k.a. a-priori) probability

Decision Systems Laboratory

Fundamental Concepts from Statistics

### **Joint Probability Distribution**



Fundamentals

 Bayesian probability theory
 Joint probability distribution Representations of j.p.d.

### Joint probability distribution

### Expresses the probability of events defined over several random variables





Source: http://postrecession.wordpress.com/tag/risk-aversion/

· Fundamental Concepts from Statistics



Joint probability distribution

Joint probability distributions are much more interesting than probability distributions over single variables

## Why?

Given the value of some of the variables in the join probability distribution, we can estimate the probability distributions over the remaining variables.

> e.g., we can predict the grade distribution in a university course given the amount of work that students put into the course



### Joint probability distributions





### **Conditional probability distribution**

Once we know the value of one of the variables, we can make a statement about the probability distribution over the other variable











### **Representations of the Joint Probability Distribution**



















Great idea (only 30-40 years old)

### Use independences among variables in the joint probability distribution to reduce the number of parameters in its representation!

Due to seminal work on probabilistic independence by A. Philip Dawid and Judea Pearl





Fundamental Concepts from Statistics -

## All brilliant ideas are obvious (once we have them ⓒ)





Fundamental Concepts from Statistics -



Every joint probability distribution can be factorized, i.e., rewritten as a product of prior and conditional probability distributions of each of the model's variables

 $\begin{aligned} \mathbf{f}(\mathbf{X}_1, \, \mathbf{X}_2, \, ..., \, \mathbf{X}_n) &= \mathbf{f}(\mathbf{X}_1 \mid \mathbf{X}_2, \, \mathbf{X}_3, \, ..., \, \mathbf{X}_n) \, \, \mathbf{f}(\mathbf{X}_2 \mid \mathbf{X}_3, \, ..., \, \mathbf{X}_n) \, ... \\ & \quad \mathbf{f}(\mathbf{X}_{n-2} \mid \mathbf{X}_{n-1}, \, \mathbf{X}_n) \, \, \mathbf{f}(\mathbf{X}_{n-1} \mid \mathbf{X}_n) \, \, \mathbf{f}(\mathbf{X}_n) \end{aligned}$ 

e.g., four variables (a, b, c, d), we have: P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(C|D) P(D) P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(D|C) P(C) ... P(A,B,C,D)=P(B|A,C,D) P(D|A,C) P(A|C) P(C)

There are n! different directed graphs corresponding to various ways of factorizing a joint probability distribution over n variables.

For n=4, we have 4!=24 different factorizations.



. . .





#### **Bayesian networks**

- This underlies the very idea of Bayesian networks.
- We draw a directed graph with arc from the conditioning variables to the variables in the factorization.



#### **Bayesian networks**

### A Bayesian network [Pearl 1988] is a directed acyclic graph (DAG) consisting of:



- The qualitative part, encoding a domain's variables (nodes) and the probabilistic (usually causal) influences among them (arcs).
- The quantitative part, encoding the joint probability distribution over these variables.



#### **Bayesian networks: Numerical parameters**

HΡV

Pap test

| ۲ | a1_below_20 | 0.0416 |
|---|-------------|--------|
|   | a2_20_29    | 0.2012 |
|   | a3_29_45    | 0.3079 |
|   | a4_45_60    | 0.2989 |
|   | a5 60 un    | 0 1504 |

Cervix



Conditional probability distributions tables for nodes with predecessors (HPV, Pap test, Cervix)

|   | Age      | a1_below_20 | a2_20_29 | a3_29_45 | a4_45_60 | a5_60_up |
|---|----------|-------------|----------|----------|----------|----------|
|   | NA       | 0.8652      | 0.8387   | 0.7904   | 0.8055   | 0.8851   |
|   | Negative | 0.069       | 0.0901   | 0.1782   | 0.1765   | 0.1012   |
| ► | Positive | 0.0613      | 0.0667   | 0.0282   | 0.0142   | 0.0082   |
|   | Qns      | 0.0045      | 0.0045   | 0.0032   | 0.0038   | 0.0055   |



Fundamental Concepts from Statistics -
## **Reasoning in Bayesian networks**

The most important type of reasoning in Bayesian networks is updating the probability of a hypothesis (e.g., a diagnosis) given new evidence (e.g., medical findings, test results).



#### P(CxCa | HPV=positive, HSIL=yes)

#### **Example:**

What is the probability of invasive cervical cancer in a (female) patient with high grade dysplasia with a history of HPV infection?





The two representations are equivalent But, when there are independences in the domain, Bayesian networks are much, much more efficient!











### Equation-based systems and graphical models



Decision Systems Laboratory



## Equation-based systems: Reversibility of causal ordering



# Advantages of directed graphs

- May be built to reflect the causal structure of a model (helps with obtaining <u>insight</u> into the problem)
- Can accommodate representation of uncertainty
- Can be reconfigured as needed
- Have sound theoretical foundations: We are dealing here
  with probability theory and decision theory
- We can talk (almost) the same language with statisticians, philosophers, and scientists







# **Further Readings**

- GeNie Software Documentation: <u>https://dslpitt.org/genie/wiki/Main\_Page</u>
- An Introduction to Statistical Learning with Applications in R: <u>http://www-bcf.usc.edu/~gareth/ISL/</u> (Chapter 1-2)
- Probabilistic Programming and Bayesian Methods for Hackers: (Chapter 1) <u>http://nbviewer.jupyter.org/github/CamDavidsonPilon/</u> <u>Probabilistic-Programming-and-Bayesian-Methods-for-</u> <u>Hackers/blob/master/Chapter1\_Introduction/</u> <u>Chapter1.ipynb</u>
- Causation, Prediction, and Search: <u>https://www.cs.cmu.edu/afs/cs.cmu.edu/project/learn-43/</u> <u>lib/photoz/.g/scottd/fullbook.pdf</u> (Chapter 1)

