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Fundamental Concepts from Statistics 

Overview 

•  Fundamentals 
(Uncertainty, probability, variance, sampling, randomness, 

elements of data analysis. Describing and displaying data, 
correlation.) 

•  Bayes theorem and Bayesian probability theory 
•  Joint probability distribution 

(The foundation of any analytic technique. Conditional probability 
distribution, Bayes theorem, prior and posterior probability 
distribution.  Tools for representing joint probability 
distributions: probability trees, Bayesian networks, equation-
based models) 

•  Representations of the joint probability distribution 
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Why statistics? 

“... in this world nothing can be said to be certain, except death 
and taxes” --- Benjamin Franklin in a letter to his friend M. Le Roy 

(*) The Complete Works of Benjamin Franklin, John Bigelow (ed.), New York and London: 
G.P. Putnam’s Sons, 1887, Vol. 10, page 170 

•  In other words, “Uncertainty is prominent around us.” 
•  It is an inherent part of all information and all knowledge. 
• We need to deal with uncertainty in empirical work. 
• Because this class focuses on analytics, we are going to 

review some basic tools for looking at data and making 
inferences from data. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Why statistics J? 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Uncertainty manifested in data 

Even though a behavior may be unpredictable in 
the short run, it may have a regular and 
predictable pattern in the long run. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Flipping Coin Probabilities 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Uncertainty manifested in data 

Some sources of uncertainty: 

Data like the above are not at all atypical. 

•  Errors in measurement (e.g., cancer misdiagnosed). 
•  Subjects providing wrong information (e.g., smoking status, age). 
•  Latent variables that we did not control for (e.g., asbestos 

exposure). 
•  Subject selection (possible bias). 
•  Bad luck. 
•  ... 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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A Brief Review of 
Probability Theory 
and Statistics  
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Why probability theory and statistics? 

“The theory of probabilities is basically only 
common sense reduced to a calculus.” 

(“… la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul.”)  
 

— Pierre-Simon Laplace, “Philosophical Essay on Probabilities” (1814) 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Why probability theory and statistics? 

• “Statistics is the study of the collection, organization, 
analysis, and interpretation of data.” Dodge, Y. (2003) The Oxford 
Dictionary of Statistical Terms 

• Statistics is the mathematical discipline for processing 
and interpreting data, it is closely related probability theory. 

• Departure from probability theory leads to provable 
anomalies (e.g., “Dutch book” argument). 

• All (with some exceptions) knowledge is uncertain and, 
hence, best expressed by means of probabilities and 
probability distributions. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Some features of statistical analysis 

•  Questions that we ask (in statistics but also in science in general) 
concern systems, i.e., parts of the real world that can be reasonably 
studied in separation. 

•  We want to make inference from a sample to a population (unless 
we can make the entire population a sample)! 

•  Ideal sampling should be random, giving every member of the 
population an equal chance of being selected 

•  In that case, we hope (but have a whole statistics for us) that the 
sample is representative, i.e., has approximately the characteristics 
of the population. 

•  If the sample is not random, then unknown/known factors may bias 
the sample (such as experimenter's biases, political factors, etc.). 

•  Even in case of random sampling (the ideal) there is no guarantee 
for a representative sample, but we can get arbitrarily close (in 
terms of probability) to the population. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Describing and displaying data 

Statistics provides tools for 
describing and displaying data 

•  What causes low student retention in 
U.S. colleges? 

•  Over 120 variables (only 8 in the 
picture on the right-hand side) 
measured across 204 universities 
(total of over 24,000 numbers). 

•  Note variables (columns) and data 
points (rows). 

Example: 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Measures of central tendency and spread 

•  mode (value occurring with the greatest frequency) 
•  median (mid-most score in a series) 
•  mean (arithmetic average) 
•  trimmed mean 

Measures of central tendency: 

•  ranges:  crude range (highest, lowest), extended range (or 
corrected range) adds one unit to the range (to account for a 
possible error in measurement), trimmed ranges (drop x% of 
extreme points on both sides) 

•  variance σ2 =Σi(xi-µ)2/n 
•  standard deviation σ =sqrt(σ2) 
•  average deviation Σi (xi-µ)/n 

Measures of spread: 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Basic statistics 
Apgra

Mean 56.72107647
Median 55.7085
Mode 72
Standard Deviation 18.07709676
Variance 326.7814274
Kurtosis -0.554450128
Skewness 0.089185832
Range 76.5
Minimum 18.75
Maximum 95.25
Sum 9642.583
Count 170

Excel 

GeNIe 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Probability distribution 

Expresses the relative probabilities of 
different values taken by a random variable 

e.g., grade distribution in 
a university course 

Source: http://en.wikipedia.org/wiki/Probability_distribution 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Standard deviation 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Histograms 

Values that a variable takes in a data set can be seen 
very nicely on plots called “histograms” 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Histograms 

Bin size affects the form, good bin size is essentially an art:  I’m not aware 
of any research on automatic selection of bins.  I am aware of at least one 
computer program that does it right (see http://genie.sis.pitt.edu/). 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Histograms 

The effect of bin size is not that strong in case of some 
distributions (here: uniform distribution). 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 



Fundamental Concepts from Statistics 

Probability distributions 

•  There is a sizeable set of known/described ways that values of a 
variable can be distributed. 

•  Some of these: Normal, Log-Normal, Uniform, Beta, Exponential, 
Triangular, Bernoulli, Binomial, Weibull, etc. 

•  Some distributions are very common, e.g., Normal (a.k.a. Gaussian) 
distribution. 

•  Explained by the Central Limit Theorem (a.k.a. “order out of 
chaos”): 

•  When you sum infinitely many random variables, the sum is 
going to be distributed normally. 

•  You don’t really need infinitely many: as few as 12 is enough 
when components are uniform, typically 30 or so gives 
beautiful Normals. 

•  There are tests for goodness of fit of data to distributions. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Scatter plots 

Plots of data known as scatter plots 
give an idea of the joint probability 
distribution between two variables. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Correlation 

•  We are often looking for the information about tendency to vary 
together rather than independently. 

•  Correlation is a measure of the extent to which two random variables 
X & Y are linearly related (watch out: correlation may not capture non-
linear dependences!). 

•  Originally introduced by Francis Galton to replace causation.  Later, 
after statisticians had realized that it cannot fully represent causality, 
they clearly distanced from it (“Correlation does not mean 
causation.”). 

•  Can make sense (smoking and lung cancer) but can also be very 
tricky (examples: hospitals and dying, good surgeon and dying, ice 
cream consumption and drowning). 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Correlation 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Correlation matrix 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Correlation does not mean causation 

Cliché but certainly true: A single correlation by itself does not 
tell us much about the causal structure 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Linear regression 

•  Scatter plots portray the relationship between two quantitative 
variables.  We would like to summarize the relationship more 
briefly. 

•  The simplest interesting relationship is linear (straight-line) 
dependence of a response variable y on an explanatory variable x. 

•  A straight line that describes the dependence of one variable on 
another is called a regression line. 

•  Regression line allows us to predict (approximately) the value of 
one variable if we know the value of the other variable. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Linear regression 
We fit a line to the data, the line equation is Y = b0 + b1X 
Note1: b0, b1 are intercept, coefficient parameters, respectively 
Note2: Linear Regression ≠ Linear Model (Y = b0 + b1X + b2X2) 

Estimated length vs. height
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• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Linear regression: Prediction 

Can we predict what an INFSCI 1000 student will estimate 
for height if she estimated the length to be 200 cm? 

Estimated length vs. height
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• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Least-squares regression 

•  How do we actually fit the line to our data points? 
•  You can visually try to draw a line across the data point 

until you are satisfied with the fit, but we would like to 
have a procedure that is somewhat objective and 
reproducible. 

•  There are many mathematical ways of fitting a line to a 
set of data.  The oldest and most commonly used is the 
method of least squares. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Least-squares regression 

The idea: minimize the sum of squares of the deviations of 
the data points from the line in the vertical direction. 

Estimated length vs. height
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Most statistical packages implement least-squares regression. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Asymmetry of regression 

Choice of explanatory variable affects the parameters of the 
regression line 

Estimated length vs. height
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• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 



Fundamental Concepts from Statistics 

Asymmetry of regression 

The two regression lines are going to be different in general 

Estimated length vs. height
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• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Linear regression: An example 

apret =  33.4 + 0.142 top10 + 0.634 tstsc, R-sq(adj) = 52.6% 
apgra = -68.4 + 0.0283 top10 + 1.87 tstsc, R-sq(adj) = 62.5% 

apret =  13.2 + 1.02 tstsc, R-sq(adj) = 50.5% 
apgra = -78.7 + 2.04 tstsc, R-sq(adj) = 62.0% 

e.g., linear regression results of the influence of tstsc 
and top10 on apret and apgra (175 universities). 

e.g., linear regression results of the influence of tstsc 
on apret and apgra (175 universities). 

Line fitting (or in general curve fitting to the interactions). 

Can be also in multidimensional space. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Time series 

•  Measurements of variables that vary over time. 
•  This is often a matter of assumption: regular, static data also vary 

over time but we assume that they do not. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Outliers 

•  Values that come about 
because of errors in 
measurements, 
transcription, etc., or 
because of momentary 
failure in our assumptions. 

•  We remove them because 
they are potentially violating 
our assumptions. 

•  How to distinguish them?  
Typically done “manually.” 
Visual inspection is usually 
very helpful. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Bayesian Probability Theory  
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Basic Notations 

•  Random variable 
•  An element / event whose status is unknown 
•  A = “It will snow tomorrow.” 

•  Domain 
•  The set of values a random variable can take: 
•  “A = The coin will flip to Head side”: Binary 
•  “A = Number of Steelers wins in 2015”: Discrete 
•  “A = % change in Facebook stock in 2015”: Continuous 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 



Fundamental Concepts from Statistics 

Axioms of Probability (Kolmogorov’s Axioms) 

1.  0 ≤ P(A) ≤ 1 
2.  P(true) = 1, P(false) = 0 
3.  P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

P(H) = 0.5    P(T) =  
P(H,H) =    P(H,H,H) =  
P(X1 = X2 = X3) =  

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Prior (Belief or Knowledge) 

Degree of belief 
in an event in the 
absence of any 
other information 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 

Snow 

No Snow 

P(Snow Tomorrow) = 0.9 
P(No Snow Tomorrow) = 0.1 
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Conditioning (Conditional Probability) 

•  Probabilistic conditioning specifies how to revise beliefs based 
on new information. 

•  Take all background information into account. This gives the prior 
probability. 

•  For Example: 

P(Slept in class) = 0.5 
P(Slept in class | liked class) = 0.25 
P(Didn’t sleep in class | liked class) = 0.75 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 

Slept Liked 
0 1 
0 1 
1 0 
0 0 
1 0 
1 1 
0 1 
1 0 
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Product Rule 

Definition of conditional probability: 
 
Product rule gives an alternative, more intuitive formulation: 
 
 
 
Product rule general form: 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 

P(X1 | X2 ) =
P(X1,X2 )
P(X2 )

P(X1,X2 ) = P(X1 | X2 )P(X2 ) = P(X2 | X1)P(X1)

P(X1,...,Xn ) = P(X1,...,Xt | Xt+1,...,Xn )P(Xt+1,...,Xn )
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Chain Rule 

Chain rule is derived by successive application of product rule: 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 

= P(X1,...,Xn−1,Xn )
= P(X1,...,Xn−1)P(Xn | X1,...,Xn−1)
= P(X1,...,Xn−2 )P(Xn−1 | X1,...,Xn−2 )P(Xn | X1,...,Xn−1)
= ...
= P(X1)P(X2 | X1)...P(Xn−1 | X1,...,Xn−2 )P(Xn | X1,...,Xn−1)

= P(Xi | X1,...,Xi−1)i=1

n
∏
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Bayes theorem 

Posterior (a.k.a. a-posteriori) 
probability Prior (a.k.a. a-priori) probability 

An easy to prove theorem, derived from the product rule: 
From 

 P(A|B) P(B) = P(A,B) 
and 
  P(B|A) P(A) = P(A,B) 
we have 

  P(A|B) = P(B|A) / P(B) P(A) 

Bayes theorem gives us a mechanism for 
changing our opinion in light of new evidence! 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Bayes theorem and Bayesian statistics 

A versatile and powerful approach that seems to 
solve a variety of problems, originating from an 
18th century English mathematician, Rev. Thomas 
Bayes (http://en.wikipedia.org/wiki/Thomas_Bayes) 

Bayes Theory is so “hot” that a lightly written 
book “The Theory That Would Not Die,” 
published in 2011, has become a bestseller 

Bayesian modeling is reliable and it solves 
hard problems. 
It can use both, data and expert knowledge. 

Recommended video: 
http://www.youtube.com/watch?v=8oD6eBkjF9o 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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What is the relation of Bayesian 
statistics to classical statistics? 

What is p(       )? 

Bayesians: “0.24 J. Probability is a measure of belief” 

Classical statisticians: “We have no clue L. 
Probability is a limiting frequency. A nuclear 
war is not a repetitive process.” 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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What is the relation of Bayesian 
statistics to classical statistics? 

•  Classical statisticians accuse Bayesians of “hocus pocus” with the 
prior distributions (“How do you know them?”). 

•  Bayesian statistics comes with so called “limit theorems,” which 
say that no matter what distribution you choose for your prior, you 
will eventually converge to the true distribution if you observe 
enough evidence. 

•  Of course, there is nothing wrong with starting with “the right 
distribution” in the beginning (In other words, it would be unwise to 
ignore available statistics). 

•  But even if you don’t have them, you can still do useful work, even if 
you have to just guess the priors. 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 



Fundamental Concepts from Statistics 

Prior (a.k.a. a-priori) probability Posterior (a.k.a. a-posteriori) 
probability 

0.01924 

Bayes theorem example 

Let the prevalence of syphilis in the population of young people 
planning to get married in Pennsylvania be 0.001. 

Let a (mandatory) test, required for obtaining the marriage 
license have sensitivity of 0.98 and specificity of 0.95. 

What is the probability that your fiancée, who tested positive for 
syphilis, has syphilis? 
 P(S|+) = P(+|S)*P(S)/P(+)                       (Bayes theorem) 

  P(+) = P(+|S) P(S) + P(+|~S) P(~S) (theorem of total probability) 

  P(+) = 0.98 0.001 + 0.05 0.999 = 0.05093 

   P(S|+) = 0.98*0.001 / 0.05093 0.001 

• Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Joint Probability Distribution  
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Joint probability distribution 

Expresses the probability of events 
defined over several random variables 

Source: http://postrecession.wordpress.com/tag/risk-aversion/ 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 



Fundamental Concepts from Statistics 

Joint probability distribution 

Expresses the probability of events 
defined over several random variables 

e.g., probability distribution 
over grades and the 
amount of work in a 
university course 

Source: http://www.sciencedirect.com/science/article/pii/S0013795208002731 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Joint probability distribution 

Joint probability distributions are much more interesting 
than probability distributions over single variables 

Given the value of some of the variables in the join 
probability distribution, we can estimate the 
probability distributions over the remaining variables. 

Why? 

e.g., we can predict the grade distribution in 
a university course given the amount of 
work that students put into the course 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Joint probability distributions 

Plots of data known as scatter plots 
give an idea of the joint probability 
distribution between two variables. 

Sometimes, we are interested in the 
linear relationship between variables 
and derive a linear regression line 
based on the observed data. 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Marginal probability distribution 

Defined as the 
probability distribution 
over a single variable 
(when there are more 
variables J). 
Can be derived from a 
joint probability 
distribution. 

Source: http://www.nature.com/nature/journal/v458/n7242/fig_tab/nature08017_F1.html 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Conditional probability distribution 

Once we know the value of one of the variables, we can make a 
statement about the probability distribution over the other 
variable 

It is going to be 
different for 
different values 
of the first 
variable 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Venn diagrams 

Source: http://en.wikipedia.org/wiki/Conditional_probability 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Conditional probability 

Definition: P(A|B) = P(A,B) / P(B) 

P(A|B1) = ? 
P(A|B2) = ? 
P(A|B3) = ? 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Independence 

Mathematical definition: A⊥B ó P(A,B) = P(A) P(B) 

A⊥B1 ? 
A⊥B2 ? 
A⊥B3 ? 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Independence: Common sense 

A⊥B1 ? 
A⊥B3 ? 
A⊥B2 ? 

The following is straightforward to derive from the 
definition of independence (assuming P(B) > 0): 
A⊥B ó P(A|B) = P(A) 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Representations of the 
Joint Probability Distribution  
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Probabilistic knowledge representations 

•  A probabilistic (Bayesian) model encodes the joint 
probability distribution over its variables. 

•  Knowledge of the joint probability distribution is sufficient 
to derive any marginal and conditional probability over the 
model’s variables. 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Probability trees 

disease 

test 

test 
present 

absent 

positive 

positive 

negative 

negative 

p=0.00098 

p=0.00002 

p=0.04995 

p=0.94905 

P(disease present ∧ test positive)  = P(D ∩ +)    = 0.00098 
P(disease present ∧ test negative) = P(D ∩ +)    = 0.00002 
P(disease absent ∧ test positive)   = P(~D ∩ +)  = 0.04995 
P(disease absent ∧ test negative)  = P(~D ∩ +)  = 0.94905 

The simplest and quite natural graphical representation of a 
joint probability distribution over discrete variables 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Computation in probability trees 

disease 

test 

test 
P(D) 

P(~D) 

P(+|D) 

P(+|~D) 

P(-|D) 

P(-|~D) 

P(D,+)=0.00098 

P(D,-)=0.00002 

P(~D,+)=0.04995 

P(~D,-)=0.94905 

What is the probability of the disease present? 
     P(D)  = 0.00098+0.00002 = 0.001 

We can calculate any marginal or conditional probability distribution 
from the joint probability distribution encoded in the tree. 

• 
Fundamentals 
Bayesian probability theory 
Joint probability distribution 
Representations of j.p.d. 
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Computation in probability trees 

disease 

test 

test 
P(D) 

P(~D) 

P(+|D) 

P(+|~D) 

P(-|D) 

P(-|~D) 

P(D,+)=0.00098 

P(D,-)=0.00002 

P(~D,+)=0.04995 

P(~D,-)=0.94905 

We can calculate any marginal or conditional probability distribution 
from the joint probability distribution encoded in the tree. 

What is the probability of the disease present given a positive test result? 
Observation of a positive test result makes some of the branches of the 
tree impossible.  What we need to do is just renormalize the remaining, 
possible (i.e., those that are compatible with the evidence) branches! 
     P(D|+)  = 0.00098/(0.00098+0.04995) ≈ 0.01924 
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What is wrong with probability trees? 

For n binary variables, we will have 2n branches. 
When n=10, the total number of branches is 1,024 
When n=11, it is 2,048 
… 
When n=20, it is 1,048,576 (which is a lot J) 

Trees grow exponentially with the number of variables 

disease 

test 

test 
present 

absent 

positive 

positive 

negative 

negative 

… 
new 

new 

new 

new 

… 
… 

… 
… 
… … 

… 
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Great idea (only 30-40 years old) 

Use independences among 
variables in the joint probability 
distribution to reduce the number 
of parameters in its representation! 

Due to seminal work on probabilistic independence 
by A. Philip Dawid and Judea Pearl 
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All brilliant ideas are obvious 
(once we have them J) 

Is the concept of a 
wheel obvious? 

Then why none of 
the civilizations in 
the Americas had 
it? 
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Factorability of the joint probability distribution 

Every joint probability distribution can be factorized, i.e., 
rewritten as a product of prior and conditional probability 
distributions of each of the model’s variables 

f(X1, X2, ..., Xn) = f(X1 | X2, X3, ..., Xn) f(X2 | X3, ..., Xn) ... 
                                  f(Xn-2 | Xn-1, Xn)  f(Xn-1 | Xn) f(Xn) 

There are n! different directed graphs corresponding to various ways 
of factorizing a joint probability distribution over n variables. 

e.g., four variables (a, b, c, d), we have: 
 P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(C|D) P(D) 
 P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(D|C) P(C) 
 ... 
 P(A,B,C,D)=P(B|A,C,D) P(D|A,C) P(A|C) P(C) 
 ... 

For n=4, we have 4!=24 different factorizations. 
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Factorability of the joint probability distribution 

• Any factorization can be simplified if we consider 
independencies among variables. 

• Those factorizations that become the simplest are 
better than others in terms of efficiency of 
representation. 

e.g., suppose we know that B⊥D|C, D⊥A|C, and A⊥C 
We can simplify 

 P(A,B,C,D)=P(B|A,C,D) P(D|A,C) P(A|C) P(C) 

into 

 P(A,B,C,D)=P(B|A,C) P(D|C) P(A) P(C) 
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Bayesian networks 

• This underlies the very idea of Bayesian networks. 
• We draw a directed graph with arc from the conditioning 

variables to the variables in the factorization. 

P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(C|D) P(D) 
P(A,B,C,D)=P(A|B,C,D) P(B|C,D) P(D|C) P(C) 
... 
P(A,B,C,D)=P(B|A,C,D) P(D|A,C) P(A|C) P(C) 
... 

P(A,B,C,D)=P(B|A,C) P(D|C) P(A) P(C) 

B⊥D|C, D⊥A|C, A⊥C 
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Bayesian networks  

A Bayesian network [Pearl 1988] is a directed acyclic 
graph (DAG) consisting of: 

•  The qualitative part, encoding a 
domain's variables (nodes) and 
the probabilistic (usually causal) 
influences among them (arcs). 

•  The quantitative part, encoding 
the joint probability distribution 
over these variables. 
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Bayesian networks: Numerical parameters 

Prior probability distribution tables for 
nodes without predecessors (Age) 

Conditional probability 
distributions tables for 
nodes with predecessors 
(HPV, Pap test, Cervix) 
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Reasoning in Bayesian networks 

The most important type of reasoning in Bayesian networks is 
updating the probability of a hypothesis (e.g., a diagnosis) 
given new evidence (e.g., medical findings, test results). 

Example: 
What is the probability of 
invasive cervical cancer in 
a (female) patient with 
high grade dysplasia with 
a history of HPV infection? 

P(CxCa | HPV=positive, HSIL=yes) 
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Probability trees and Bayesian networks 

Bayesian network 

disease 

test 

test 
present 

absent 

positive 

positive 

negative 

negative 

p=0.00098 

p=0.00002 

p=0.04995 

p=0.94905 

probability tree 

The two representations are equivalent 
But, when there are independences in the domain, 
Bayesian networks are much, much more efficient! 
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HEPAR II Model 

70 variables; 2,139 numerical parameters (instead of over 270-1≈ 1021!) 
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Independences: Markov condition 

• Allows to read back dependences and independences 
from the graph. 

•  Informally speaking, it is an assumption that ties directed 
probabilistic graphs with probability, specifying how a 
directed graphs represents independence. 

• A node is independent of its non-descendants given its 
predecessors (D-separation). 
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Markov condition: Example 

R⊥B, R⊥S, B⊥S, R⊥F, B⊥F, S⊥F 
R⊥W, B⊥W, W⊥F, G⊥F 
R⊥H|G, B⊥H|G, S⊥H|G, W⊥H|G 

W⊥*|S 
R⊥W|G,S,  B⊥W|G,S 

P(H,G,W,R,B,S, F)=P(H|G,F) P(G|R,B,S) P(W|S) P(R) P(B) P(S) P(F) 

This graph implies the following 
(conditional) independences: 
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classsize = (nstud * cload) / (nfac * tload) 
facsal = (oinc + tuition * nstud) / (nfac * (1 + overh)) 
stratio = nstud / nfac 
cload = 15 
tload = 6 
nstud = 22102 
nfac = 3006 
oinc = 30000000 
tuition = 12000 
overh = 0.48 

Equation-based systems and graphical models 

Core equations 

Equations for exogenous variables 

Together they determine 
the structure of the model 
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classsize = (nstud * cload) / (nfac * tload) 
facsal = (oinc + tuition * nstud) / (nfac * (1 + overh)) 
stratio = nstud / nfac 
cload = 15 
tload = 6 
nstud = 22102 
nfac = 3006 
oinc = 30000000 
tuition = 12000 
overh = 0.48 

Equation-based systems: 
Reversibility of causal ordering 

Setting stratio to be exogenous 
at the expense of nfac 

stratio = 10 

The new model structure 

Explication of the asymmetries due 
to Herb Simon (early 1950s) 
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Advantages of directed graphs 

•  May be built to reflect the causal structure of a model 
(helps with obtaining insight into the problem) 

•  Can accommodate representation of uncertainty 
•  Can be reconfigured as needed 
•  Have sound theoretical foundations: We are dealing here 

with probability theory and decision theory 
•  We can talk (almost) the same language with statisticians, 

philosophers, and scientists 
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Family of directed graphs (a bigger picture) 

Both, systems of equations and joint probability 
distributions can be pictured by directed acyclic graphs. 

classsize = (nstud * cload) / (nfac * tload) 
facsal = (oinc + tuition * nstud) / (nfac * (1 + overh)) 
stratio = nstud / nfac 
cload = 15 

tload = 6 
nstud = 22102 

nfac = 3006 
oinc = 30000000 
tuition = 12000 

overh = 0.48 

(a.k.a. “influence nets,” “causal diagrams,” etc.) 
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•  GeNie Software Documentation: 
https://dslpitt.org/genie/wiki/Main_Page  

•  An Introduction to Statistical Learning with Applications in 
R: http://www-bcf.usc.edu/~gareth/ISL/ (Chapter 1-2) 

•  Probabilistic Programming and Bayesian Methods for 
Hackers: (Chapter 1)
http://nbviewer.jupyter.org/github/CamDavidsonPilon/
Probabilistic-Programming-and-Bayesian-Methods-for-
Hackers/blob/master/Chapter1_Introduction/
Chapter1.ipynb   

•  Causation, Prediction, and Search: 
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/learn-43/
lib/photoz/.g/scottd/fullbook.pdf (Chapter 1) 

Further Readings 


