
Data Storage

Philip J. Cwynar

University of Pittsburgh
School of Information Sciences

pcwynar@pitt.edu

Data Storage

Data Storage

Outline

•  Collecting data
•  Relational Databases
•  NoSQL Databases

•  Key-value databases
•  Document databases
•  Column-family stores
•  Graph databases

•  Beyond NoSQL Databases

Data Storage

Collecting Data

Data Storage

Big Data’s 3V

Volume

Velocity Variety

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

Data Storage

The quantity of data collected

•  The New York Stock Exchange generates about one
terabyte of new trade data per day.

•  Facebook hosts approximately 10 billion photos, taking
up one petabyte of storage.

•  Ancestry.com, the genealogy site, stores around 2.5
petabytes (1015) of data.

•  The Internet Archive stores around 2 petabytes (1015) of
data, and is growing at a rate of 20 terabytes (1012) per
month.

•  The Large Hadron Collider near Geneva, Switzerland,
will produce about 15 petabytes (1015) of data per year.

Reference: Tom White, Hadoop: The Definitive Guide, Third Edition, 2012

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

I suspect the term SD came from the name for a common
language used to access DBs,
called Structured Query Language, or SQL.

SQL provides a well-defined way for applications to manage
data in a DB.

The little snippet of SQL code here illustrates how an
application could retrieve all rows from a table called Book
where the Price is greater than 100 and request that the
result be sorted in ascending order by title.

Structured	Data

Data Storage

Storing Data: Relational Databases

Data Storage

Relational databases: Definition

•  Relational database: A set of relations
•  Relation: Made up of 2 parts:

–  Schema: specifies name of relation plus name and type
of each column
Customer(id:int, name:string, gender:string, email:string)

–  Instance: a table, with rows and columns

id name gender email

1 Philip Male pcwynar@pitt.edu

2 Chirayu Male chw@pitt.edu

–  Can think of a relation as a set of rows (tuples)
Reference for this section: NoSQL distilled: A brief guide to the emerging
world of polyglotp ersistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

Data model oriented around a relational database (using UML notation)

Relational databases: Data Model
Entity Relationship Diagram

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

Typical data using RDBMS data model

Relational databases: Data Model

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

•  IC: condition that must be true for any instance of the
database, e.g., domain constraints
–  ICs are specified when schema is defined
–  ICs are checked when relations are modified

•  A legal instance of a relation is one that satisfies all
specified ICs.
–  DBMS should not allow illegal instances

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•
Relational databases: Integrity constraints (ICs)

Data Storage

•  A set of fields is a key for a relation if:
1.  No two distinct tuples can have same value in all

key fields, and
2.  This is not true for any subset of the key

»  If part 2 is false, then it is super key.
•  K is a candidate key if K is minimal.
•  Among all candidate keys we must select one that

becomes the Primary Key

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•
Relational databases: Primary key constraints

Data Storage

•  Foreign key: Set of fields in one relation that is used to
refer to a tuple in another relation (must correspond to a
primary key of the second relation)

•  If all foreign key constraints are enforced, referential
integrity is achieved

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•
Relational databases: Foreign key constraints

Data Storage

Relational databases: Normalization

•  1st Normal Form: make tables flat (all elements atomic)
•  2nd Normal Form: Every non-prime attribute depends on

a candidate key or another non-prime attribute
•  3rd Normal Form: some redundancy but dependency

preserving
•  BCNF (Boyce Codd Normal Form): no redundancy but

not dependency preserving
•  …
•  Redundancy might lead to update anomalies
•  Note: we are going to break normalization

(denormalize) later

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

Relational databases: Query language

•  A major strength of the relational model:
–  Supports simple, powerful querying of data (SQL)

» DDL (Data Description Language): create, drop, alter
» DML (Data Manipulation Language): insert, update,

delete, select
» DCL (Data Control Language): grant, revoke
»  TCL (Transaction Control Language): commit, rollback

•  Queries can be written intuitively, and the DBMS is
responsible for efficient evaluation
–  The key: precise semantics for relational queries
–  Allows the optimizer to extensively re-order operations,

and still ensure that the answer does not change.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

Relational databases: Example
Genres

Movies

MovieGenres

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

Relational databases: Query Example

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

Relational databases: ACID transactions

•  Transaction is a unit of work performed within a database
management system against a database

•  Atomicity – all or nothing
•  Consistency – bring database from one valid state to another
•  Isolation - the intermediate state of a transaction is invisible

to other transactions
•  Durability - after a transaction successfully completes,

changes to data persist and are not undone, even in the
event of a system failure.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases

•

Data Storage

Structured Data Warehousing Approaches

Bill Inmon – “Father of Data Warehousing”
----Enterprise Data Warehouse

Ralph Kimball – “Father of Business Intelligence”
----Data Mart / Star Schema

Data Storage

● Bill	Inmon’s	enterprise	data	warehouse	approach	(the	top-down	design):		

A	 normalized	 data	model	 in	 3NF	 is	 designed	 first.	 Then	 the	 dimensional	 data	
marts,	 which	 contain	 data	 required	 for	 specific	 business	 processes	 or	 specific	
departments	are	created	from	the	data	warehouse.	

● Ralph	Kimball’s	dimensional	design	approach	(the	boCom-up	design):		

The	 data	 marts	 for	 reporDng	 and	 analysis	 are	 created	 first;	 these	 are	 then	
combined	together	to	create	a	broad	data	warehouse.	

Data Storage

Bill Innmon – Operational Data Store (ODS)

Data Storage

Ralph Kimball – Star Schema

Data Storage

Star Schema – Data Mart Design
Ralph Kimball

Data Storage

The star schema architecture is the simplest data warehouse schema. It is
called a star schema because the diagram resembles a star, with points
radiating from a center.

The center of the star consists of fact table and the points of the star are
the dimension tables.

Usually the fact tables in a star schema are in third normal form(3NF)
whereas dimensional tables are de-normalized.

Despite the fact that the star schema is the simplest architecture, it is most
commonly used nowadays and is recommended by Oracle.

Star Schema – Data Mart Design
Ralph Kimball

Data Storage

Pros and cons of both the approaches	

Data Storage

Storing Data: NoSQL Databases

Data Storage

Unstructured Data Types
Here is a limited list of types of unstructured data:

• Emails
• Word Processing Files
• PDF files
• Spreadsheets
• Digital Images
• Video
• Audio
• Social Media Posts

Data Storage

NoSQL databases

NoSQL databases:
–  Not using the relational model
–  Schemaless
–  Running well on clusters
–  Tend to be open-source
–  List of NoSQL databases (more than 150!):

http://nosql-database.org/

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Why are NoSQL databases interesting?

Two primary reasons:
•  Application development productivity
•  Large-scale data

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

NoSQL databases: Data models

http://en.wikipedia.org/wiki/Data_warehouse

•  Key-value databases:
–  BerkeleyDB, LevelDB, Memcached, Project Voldemort,

Redis, Riak, …
•  Document databases:

–  CouchDb, MongoDB, OrientDB, RavenDB, Terrastore, …
•  Column-family stores:

–  Amazon SimpleDB, Cassandra, Hbase, Hypertable, …
•  Graph databases:

–  FlockDB, HyperGraphDB, Infinite Graph, Neo4J,
OrientDB, …

•  Other

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Aggregate data model: Example

•  DDD: Domain-Driven Design
•  Apparently easier to program
•  Definitely, makes it easier to store and process data on

multiple computer clusters. http://martinfowler.com/bliki/AggregateOrientedDatabase.html

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Aggregate data model

// in customers
{
"id":1,
"name":"Martin",
"billingAddress":[{"city":"Chicago"}]
}
// in orders
{
"id":99,
"customerId":1,
"orderItems":[
 {
 "productId":27,
 "price": 32.45,
 "productName": "NoSQL Distilled"
 }
],
"shippingAddress":[{"city":"Chicago"}]
"orderPayment":[
 {
 "ccinfo":"1000-1000-1000-1000",
 "txnId":"abelif879rft",
 "billingAddress": {"city": "Chicago"}
 }],
}

An aggregate data model

http://martinfowler.com/bliki/AggregateOrientedDatabase.html
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Aggregate data model
// in customers
{
"customer": {
"id": 1,
"name": "Martin",
"billingAddress": [{"city": "Chicago"}],
"orders": [
 {
 "id":99,
 "customerId":1,
 "orderItems":[
 {
 "productId":27,
 "price": 32.45,
 "productName": "NoSQL Distilled"
 }
],
 "shippingAddress":[{"city":"Chicago"}]
 "orderPayment":[
 {
 "ccinfo":"1000-1000-1000-1000",
 "txnId":"abelif879rft",
 "billingAddress": {"city": "Chicago"}
 }],
 }]}
}

An aggregate data model
http://martinfowler.com/bliki/AggregateOrientedDatabase.html
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Aggregate data model: Pros and cons

•  Cons:
–  It is often difficult to draw aggregate boundaries well
–  Does not support ACID transactions (thus sacrifices

consistency)
–  Some queries are easier (to the point of being practical)

but others may be really hard (e.g., to get to product
sales history, you’ll have to dig into every aggregate in
the database).

•  Pros:
–  Helps greatly with running on a cluster: This is the main

argument for NoSQL databases.

http://blog.dynatrace.com/2011/10/05/nosql-or-rdbms-are-we-asking-the-right-questions/

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Aggregate data model: Key points

•  An aggregate is a collection of data that we interact with
as a unit.

•  Key-value, document, and column-family databases can
all be seen as forms of aggregate-oriented database.

•  Aggregates make it easier for the database to manage
data storage over clusters.

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Storing Data: NoSQL Database:
Key-Value Databases

Data Storage

Key-value databases

•  A key-value store is a simple hash table
–  Get the value for the key
–  Put a value for a key
–  Delete a key from the data store

•  The value is a blob
•  You can think of such databases as databases

with only one table, which has two columns: ID
and Value.

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Key-value databases: Riak

1,000s of startups, enterprises, and organizations
have deployed Riak for their production systems.

RDBMS Riak

Database Riak cluster

Table Bucket

Row Key-value

RowID (at least in Oracle) key

References: http://wiki.basho.com/Riak.html
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Terminology comparison:

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Key-value databases: Riak

•  Writing to the Riak bucket using the store API:
 Bucket bucket = getBucket(bucketName);
 IRiakObject riakObject = bucket.store(key, value).execute();

•  Getting value for the key using fetch API:
 Bucket bucket = getBucket(bucketName);
 IRiakObject riakObject = bucket.fetch(key).execute();
 byte[] bytes = riakObject.getValue();
 String value = new String(bytes);

References: http://wiki.basho.com/Riak.html
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Key-value databases: Riak

Riak provides an HTTP-based interface (this allows all operations to
be performed from a web browser or command line):
–  curl -X PUT HTTP://127.0.0.1:8098/riak/images/1.jpg -H "Content-

type: image/jpeg" --data-binary @images.jpg
–  curl -i HTTP://127.0.0.1:8098/riak/images/1.jpg
–  curl -v -X POST -d '
{ "lastVisit":1324669989288,
"user":{"customerId":“1",
"name":"buyer",
"countryCode":"US",
"tzOffset":0}
}' -H "Content-Type:application/json“ http://127.0.0.1:8098/riak/test/1
–  curl -i HTTP://127.0.0.1:8098/riak/test/1

References: http://wiki.basho.com/Riak.html
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Key-value databases: Usage

•  When to use:
–  Storing session information
–  User profiles, preferences
–  Shopping cart data

•  When not to use
–  Relationships among data
–  Multi-operation transactions
–  Query by data
–  Operations by sets

References: http://wiki.basho.com/Riak.html
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Storing Data: NoSQL Database:
Document Databases

Data Storage

•  Documents are the main concept here
–  DB stores and retrieves documents

•  Documents stored are similar to each other but do not
have to be exactly the same
–  Schemaless

•  Documents are stored in the value part of the key-
value store

Document databases

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

�  One document:
¡  { "firstname": "Martin",

 "likes": ["Biking", "Photography"],
 "lastcity": "Boston",
 "lastVisited":
 }

�  Another document:
¡  {

 "firstname": "Pramod",
 "citiesvisited": ["Chicago",

"London", "Pune", "Bangalore"],
 "addresses": [
 { "state": "AK",
 "city": "DILLINGHAM",
 "type": "R"
 },
 { "state": "MH",
 "city": "PUNE",
 "type": "R" }
],
 "lastcity": "Chicago"
}

Document databases: What is document?

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Schema can differ significantly
among documents in the
same database.

This was not possible in
RDBMS databases.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Document databases: MongoDB

Terminology comparison:

RDBMS MongoDB

Database MongoDB

Table Collection

Row Document

Rowid (at least Oracle) _id

Join DBRef

References: http://www.mongodb.org/
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Document databases: MongoDB

•  [DEMO] - http://www.mongodb.org/#
•  Save document to MongoDB:

–  db.docName.save({firstname: 'Martin', likes: ['Biking',
'Photography'], lastcity: 'Boston', lastVisited:''});

•  Save another document to MongoDB:
–  db.docName.save({firstname: 'Pramod', citiesvisited:

['Chicago', 'London', 'Pune', 'Bangalore'], addresses:
[{ state: 'AK', city: 'DILLINGHAM', type: 'R'}, { state:
'MH', city: 'PUNE', type: 'R' }], lastcity: 'Chicago'});

References: http://www.mongodb.org/
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

•  [DEMO] - http://www.mongodb.org/#
•  Save document to MongoDB:

–  db.collectionName.insert({firstname: 'Martin', likes:
['Biking', 'Photography'], lastcity: 'Boston',
lastVisited:''});

•  Save another document to MongoDB:
–  db.collectionName.insert({firstname: 'Pramod',

citiesvisited: ['Chicago', 'London', 'Pune',
'Bangalore'], addresses: [{ state: 'AK', city:
'DILLINGHAM', type: 'R'}, { state: 'MH', city: 'PUNE',
type: 'R' }], lastcity: 'Chicago'});

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Document databases: MongoDB

[DEMO] - http://www.mongodb.org/#
Querying:
•  All document in docName colleciton:

db.collectionName.find();
SQL: select * from docName

•  Documents which satisfy a condition:
db.collectionName.find({firstname:"Martin"});
Equivalent to SQL query:

 select * from collectionName where firstname = “Martin”

References: http://www.mongodb.org/
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Document databases: MongoDB

•  SQL:
–  SELECT * FROM customerOrder, orderItem, product

WHERE
customerOrder.orderId = orderItem.customerOrderId
AND orderItem.productId = product.productId
AND product.name LIKE '%Big Data%‘

•  MongoDB:
–  db.collectionName.find({"orders.productName":/Big Data/});

References: http://www.mongodb.org/
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Document databases: Usage

•  When to Use:
–  Event Logging
–  Content Management Systems, Blogging Platforms
–  Web Analytics or Real-Time Analytics
–  E-Commerce Applications

•  When Not to Use
–  Complex Transactions Spanning Different Operations
–  Queries against Varying Aggregate Structure

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Key-value vs. document data models

Key-Value Model Document Model

Aggregate Opaque Transparent

Access
Only lookup based on key

(return whole
aggregation)

Queries based on fields in
the aggregate

(can retrieve parts)

Index -
Can create indexes based

on the contents of the
aggregate

http://blog.dynatrace.com/2011/10/05/nosql-or-rdbms-are-we-asking-the-right-questions/

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Storing Data: NoSQL Database:
Column-Family Stores

Data Storage

Column-oriented data model

http://en.wikipedia.org/wiki/Column-oriented_DBMS

Id First Name Last Name Salary

1 Joe Smith 40000

2 Mary Jones 50000

3 Mike Johnson 45000

1, Joe, Smith, 40000
2, Mary, Jones, 50000
3, Mike, Johnson, 45000

1, 2, 3
Joe, Mary, Mike
40000,50000,45000

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

•  Column-oriented organizations are more efficient when an
aggregate needs to be computed over many rows but only for a
notably smaller subset of all columns of data, because reading
that smaller subset of data can be faster than reading all data.

•  Column-oriented organizations are more efficient when new
values of a column are supplied for all rows at once, because
that column data can be written efficiently and replace old
column data without touching any other columns for the rows.

•  Row-oriented organizations are more efficient when many
columns of a single row are required at the same time, and
when row-size is relatively small, as the entire row can be
retrieved with a single disk seek.

•  Row-oriented organizations are more efficient when writing a
new row if all of the column data are supplied at the same time,
as the entire row can be written with a single disk seek.

Column-oriented data model

http://en.wikipedia.org/wiki/Column-oriented_DBMS

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Column-oriented data model

•  Data indexed by:
–  (row:string, column:string, time:int64) à string

•  #of distinct column families - small (in hundreds)
•  unbounded number of columns
•  Data processing is pushed to the application

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Column-family databases

http://hbase.apache.org/book.html#datamodel

Physical View
Column Family anchor

Column Family contents

Row Key Time Stamp Column Family contents Column Family anchor

“com.cnn.www” t9 anchor:cnnsi.com=“CNN”

“com.cnn.www” t8 anchor:my.look.ca=“CNN.com”

“com.cnn.www” t6 contents:html=“<html>…”

“com.cnn.www” t5 contents:html=“<html>…”

“com.cnn.www” t3 contents:html=“<html>…”

Row Key Time Stamp Column Family anchor

“com.cnn.www” t9 anchor:cnnsi.com=“CNN”

“com.cnn.www” t8 anchor:my.look.ca=“CNN.com”

Row Key Time Stamp Column Family contents

“com.cnn.www” t6 contents:html=“<html>…”

“com.cnn.www” t5 contents:html=“<html>…”

“com.cnn.www” t3 contents:html=“<html>…”

Conceptual View:

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Column-family databases: HBase

•  HBase is the Hadoop database
–  Distributed, scalable, big data store

•  Use HBase when you need random, real-time read/write
access to your Big Data

•  Goal is to host very large tables:
–  billions of rows X millions of columns

•  HBase is an open-source, distributed, versioned, column-
oriented store modeled after Google's Bigtable

http://hbase.apache.org/

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Column-family databases: HBase

•  No SQL-like query language
–  Java API
–  HBase Shell

»  create ‘test’, ‘cf’
»  put ‘test’, ‘row1’, ‘cf:a’, ‘value1’
»  put ‘test’, ‘row2’, cf:b’, ‘value2’
»  get ‘test’, ‘row1’

•  COLUMN CELL
 cf:a timestamp=1288380727188,

value=value1
•  HBql – separate project to simplify the usage of Hbase

(hbql.com)

http://hbase.apache.org/book/quickstart.html#shell_exercises

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Column-family databases: Usage

•  When to use:
–  Event logging
–  Content management systems, blogging platforms
–  Expiring usage
–  Need aggregate using, e.g., SUM or AVG

•  When not to use
–  Frequent changes to the database (inserts and

deletes maybe expensive)

References: http://wiki.basho.com/Riak.html;
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Storing Data: NoSQL Database:
 Graph Databases

Data Storage

Graph databases

An example graph structure
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Graph databases

Relationships with properties
NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

•  Node creation:
–  Node martin = graphDb.createNode();
–  martin.setProperty("name", "Martin");
–  Node pramod = graphDb.createNode();
–  pramod.setProperty("name", "Pramod");

•  Relationship creation:
–  martin.createRelationshipTo(pramod, FRIEND);
–  pramod.createRelationshipTo(martin, FRIEND);

Graph Databases: Neo4j

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Create index:
Transaction transaction = graphDb.beginTx();

try {
 Index<Node> nodeIndex = graphDb.index().forNodes("nodes");
 nodeIndex.add(martin, "name", martin.getProperty("name"));
 nodeIndex.add(pramod, "name", pramod.getProperty("name"));
 transaction.success();
} finally {
 transaction.finish();
}

Relationship creation:
Node martin = nodeIndex.get("name", "Martin").getSingle();
 allRelationships = martin.getRelationships();
incomingRelations = martin.getRelationships(Direction.INCOMING);

Graph Databases: Neo4j, Querying

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

•  Traverse the graphs at any depth:
–  Node barbara = nodeIndex.get("name", "Barbara").getSingle();
–  Traverser friendsTraverser = barbara.traverse(Order.BREADTH_FIRST,
 StopEvaluator.END_OF_GRAPH,
 ReturnableEvaluator.ALL_BUT_START_NODE,
 EdgeType.FRIEND,
 Direction.OUTGOING);

•  Finding paths between two nodes:
–  Node barbara = nodeIndex.get("name", "Barbara").getSingle();

Node jill = nodeIndex.get("name", "Jill").getSingle();
PathFinder<Path> finder = GraphAlgoFactory.allPaths(
 Traversal.expanderForTypes(FRIEND,Direction.OUTGOING)
 ,MAX_DEPTH);
Iterable<Path> paths = finder.findAllPaths(barbara, jill);

Graph Databases: Neo4j, Querying

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Cypher query language:
START beginingNode = (beginning node specification)

MATCH (relationship, pattern matches)
WHERE (filtering condition: on data in nodes and relationships)
RETURN (What to return: nodes, relationships, properties)
ORDER BY (properties to order by)
SKIP (nodes to skip from top)
LIMIT (limit results)

 Graph Databases: Neo4j, Cypher QL

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

•  Find all nodes connected to Barbara, either incoming or outgoing:
–  START barbara = node:nodeIndex(name ="Barbara")

MATCH (barbara)--(connected_node)
RETURN connected_node

•  When we are interested in directional significance:
–  For incoming relationship

 MATCH (barbara) <-- (connected_node)
–  For outgoing relationship

 MATCH (barbara) --> (connected_node)

 Graph Databases: Neo4j, Cypher QL

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

•  Match can also be done on specific relationships using
the :RELATIONSHIP_TYPE convention and returning the required
fields or nodes:
–  START barbara = node:nodeIndex(name = "Barbara")

MATCH (barbara)-[:FRIEND]->(friend_node)
RETURN friend_node.name,friend_node.location

•  Query for relationships where a particular relationship property
exists:
–  START barbara = node:nodeIndex(name = "Barbara")

MATCH (barbara)-[relation]->(related_node)
WHERE type(relation) = 'FRIEND'
RETURN related_node.name, relation.since

Graph Databases: Neo4j, Cypher QL

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Graph databases: Usage

•  When to Use:
–  Connected Data
–  Routing, Dispatch, and Location-Based Services
–  Recommendation Engines

•  When Not to Use
–  When you want to update all or a subset of entities
–  Not “graph” data model

NoSQL distilled : a brief guide to the emerging world of
polyglot persistence / Pramod J Sadalage, Martin Fowler.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

NoSQL databases: Summary

•  Key-value databases
•  Document databases
•  Column-family stores
•  Graph databases

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

NoSQL Databases: Goals

•  Not using the relational model
•  Schemaless
•  Running well on clusters
•  Aggregates – nested data stored together

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

NoSQL: Schemaless

•  Relational DB:
–  You first have to define a schema for your database

•  NoSQL:
–  Storing data is more casual:

» Key-value store – allow any data under a key
» Document DB – no restrictions on the structure of

the document
» Column-family DB – allow rows have different

columns, any data under any column
» Graph DB – allow freely adding new edges and

properties to nodes and edges

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

NoSQL: Schemaless

•  Advantages:
–  Easy to handle changes
–  Easy to deal with non-uniform data

» where each record has different set of fields
•  Disadvantages:

–  Database remains ignorant of the schema
» Can’t validate data types

–  Implicit schema in the application code
» Bad and/or complicated code
» Multiple application access the same database

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

NoSQL Databases – BASE properties

•  Basically available: Use replication to reduce the likelihood of data
unavailability and use “sharding” (partitioning the data among
many different storage servers) to make any remaining failures
partial. The result is a system that is always available, even if
subsets of the data become unavailable for short periods of time.

•  Soft state: While ACID systems assume that data consistency is a
hard requirement, NoSQL systems allow data to be inconsistent
and relegate designing around such inconsistencies to application
developers.

•  Eventually consistent: Although applications must deal with
instantaneous consistency, NoSQL systems ensure that at some
future point in time the data assumes a consistent state. In
contrast to ACID systems that enforce consistency at transaction
commit, NoSQL guarantees consistency only at some undefined
future time.

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

NoSQL differs to RDBMS in the way entities get distributed and
that no consistency is enforced across those entities

http://blog.dynatrace.com/2011/10/05/nosql-or-rdbms-are-we-asking-the-right-questions/

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Why an RDBMS does not scale and many NoSQL solutions do?

Data Storage

NoSQL databases

NoSQL databases:
–  Not using the relational model
–  Schemaless
–  Running well on clusters

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Storing Data: Beyond NoSQL

Data Storage

Beyond NoSQL

•  File systems
•  XML Databases
•  Object Databases
•  Others …

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

File systems

•  Simple and widely implemented
–  Most of the devices have one or another file system

•  More like key-value stores with hierarchic key
–  No support for queries

•  Little control over concurrency
–  Simple locking

•  Cope with very large entities
–  Video, audio

•  Very good for sequence access
•  Works best for relatively small number of large files that

can be processed in big chunks

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

XML databases

•  Document-like databases
–  Documents are compatible with XML and various XML

technologies are used to manipulate the document
•  Allow to define schema

–  DTD, XML Schema
•  Allow to perform transformation

–  XSLT
•  Allow to query documents:

–  XPath, XQuery
–  SQL/XML

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Object databases

•  Mapping from in-memory data structures to
relational tables

•  Close integration with the application

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Storage: Summary
When and why you (should) choose an RDBMS?

http://blog.dynatrace.com/2011/10/05/nosql-or-rdbms-are-we-asking-the-right-questions/

•  Table based
•  Relations between distinct Table Entities and Rows
•  Referential Integrity
•  ACID Transactions
•  Arbitrary Queries and Joins

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Storage: Summary
Why an RDBMS might not be right for you?

•  If you just want to store your application entities in a persistent
and consistent way

•  If you have hierarchical application objects and need some query
capability into them

•  If you ever tried to store large trees or networks you will know that
an RDBMS is not the best solution here

•  If you are running in the Cloud and need to run a distributed
database for durability and availability.

•  You might already use a data warehouse for your analytics. If your
data grows to large to be processed on a single machine, you
might look into hadoop or any other solution that supports
distributed Map/Reduce.

http://blog.dynatrace.com/2011/10/05/nosql-or-rdbms-are-we-asking-the-right-questions/

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Storage: Summary
Hybrid Systems? (examples)

F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's
Ad Business
Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric

Rollins, Bart Samwel, Radek Vingralek, Chad Whipkey, Xin
Chen, Beat Jegerlehner, Kyle Littlefield, and Phoenix Tong.
2012. F1: the fault-tolerant distributed RDBMS supporting
google's ad business. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data
(SIGMOD '12). ACM, New York, NY, USA, 777-778.
DOI=10.1145/2213836.2213954
http://doi.acm.org/10.1145/2213836.2213954

Oracle In-Database Hadoop: When MapReduce Meets RDBMS
Xueyuan Su and Garret Swart. 2012. Oracle in-database hadoop:

when mapreduce meets RDBMS. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of
Data (SIGMOD '12). ACM, New York, NY, USA, 779-790.
DOI=10.1145/2213836.2213955
http://doi.acm.org/10.1145/2213836.2213955

http://blog.dynatrace.com/2011/10/05/nosql-or-rdbms-are-we-asking-the-right-questions/

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Polyglot Persistence

http://martinfowler.com/articles/nosql-intro.pdf

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

Suggested readings

 Raghu Ramakrishnan, Johannes Gehrke. Database Management Systems. 3d Edition. WCB/
McGraw-Hill 2003

Michael Stonebraker and Joseph M. Hellerstein , What Goes Around Comes Around (
http://mitpress.mit.edu/books/chapters/0262693143chapm1.pdf)

NoSQL distilled: a brief guide to the emerging world of polyglotp ersistence / Pramod J Sadalage,
Martin Fowler.

Tom White, Hadoop: The Definitive Guide, 3nd Edition, 2012
Fay Chang et. al, Bigtable: A Distributed Storage System for Structured Data
Jeffrey Dean and Sanjay Ghemaw. MapReduce: simplified data processing on large

clusters. Commun. ACM 51, 1 (January 2008)
http://hadoop.apache.org/
http://hadoop.apache.org/docs/r0.20.2/hdfs_design.html
http://hive.apache.org/docs/r0.9.0/
http://hbase.apache.org/
http://pig.apache.org/docs/r0.8.1/
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/

pubs/archive/38125.pdf

Collecting data
Relational Databases
NoSQL Databases
Beyond NoSQL Databases •

Data Storage

